MATH8510 Lecture 1 Notes

Charlie Conneen

August 24, 2022

What are the *p*-adic numbers?

Fix a prime number $p \in \mathbb{Z}$.

Definition. The field of *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to the *p*-adic absolute value

$$\left|\cdot\right|_{p}:\mathbb{Q}\to\mathbb{R}_{\geq 0}$$

defined by $|0|_p \coloneqq 0$ and $|x|_p \coloneqq p^{-\operatorname{ord}_p(x)}$, where $\operatorname{ord}_p(x)$ is the unique $v \in \mathbb{Z}$ such that $x = p^v \cdot \frac{a}{b}$ with $p \nmid a$ and $p \nmid b$.

Observe from the above definition that $|x|_p \leq 1$ for all $x \in \mathbb{Z}$. In particular, whenever $x \in p^n \mathbb{Z}$, we have that $|x|_p \leq p^{-n}$.

Initial roadmap to the *p*-adics.

- 1. First, we construct \mathbb{Q}_p .
- 2. Then, we will show that every nonzero $x \in \mathbb{Q}_p$ can be written uniquely as a series of the form

$$x = \sum_{n=v}^{\infty} \alpha_n p^n$$

where $\alpha_n \in \{0, 1, 2, \dots, p-1\}$ and $\alpha_v \neq 0$. Note that v may be any element of \mathbb{Z} .

Assuming the above series expression for x, we see that $x \in \mathbb{N} \iff v \ge 0$ and the digits d_n eventually terminate. As for the negative integers, first observe that

$$\sum_{n=0}^{\infty} p^n = \lim_{m \to \infty} \sum_{n=0}^m p^n = \lim_{m \to \infty} \frac{p^{m+1} - 1}{p - 1} = -\frac{1}{p - 1}$$
$$\implies \sum_{n=0}^{\infty} (p - 1) p^n = -1.$$

Example (informal). $-1 \in \mathbb{Q}_5$ can be written as

$$-1 = \sum_{n=0}^{\infty} 4 \cdot 5^n$$

or, in "decimal form" we have $-1 = (\dots 44444)_5$. As for -3, we can write $-1 \cdot 3$ in "decimal form" and multiply to compute:

$$+$$
 ... 4444
+ ... 0003

We can check that $-3 = (\dots 44442)_5$ by adding 3, and seeing that . A similar geometric series trick gives expansions for all $\frac{a}{b} \in \mathbb{Q}$.

Remark. For the localization $\mathbb{Z}_{(p)}$, the same process of power series expansion works.

In place of $\mathbb{Z}, \mathbb{Q}, p$, consider $\mathbb{C}[x], \mathbb{C}(x)$, and a prime ideal \mathfrak{p} . There is a unique $\alpha \in \mathbb{C}$ such that $\mathfrak{p} = (x - \alpha)$ and every nonzero $\frac{p(x)}{q(x)}$ has a unique formal Laurent expansion

$$\frac{p(x)}{q(x)} = \sum_{n=v}^{\infty} c_n \left(x - \alpha\right)^n$$

with $c_n \in \mathbb{C}$ and $c_v \neq 0$ (although v may be any integer). This is called the **field of Laurent** series, and is denoted $\mathbb{C}((x - \alpha))$.

In fact, every element of the localization $\mathbb{C}[x]_{\mathfrak{p}}$ may be written in the form $\frac{p(x)}{q(x)}$, where $p(x) \in \mathbb{C}[x]$ and $q(x) \in \mathbb{C}[x] \setminus \mathfrak{p}$. Moreover, saying $c_n \in \mathbb{C} \cong \mathbb{C}[x]/\mathfrak{p}$ is just like saying $\alpha_n \in \{0, 1, 2, \ldots, p-1\}$ " = " $\mathbb{Z}/p\mathbb{Z}$.

Considering the embedding $\mathbb{C}(x) \hookrightarrow \mathbb{C}((x-\alpha))$ is what is meant by "thinking about $\mathbb{C}(x)$ locally near α ." This is especially useful if $(x - \alpha)$ is understood to be small.

Considering the embedding $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ is what is meant by "thinking about \mathbb{Q} locally near p." This is especially useful analytically if p is understood to be small.

You might ask why it's important to think of \mathbb{Q} locally near p. The claim is that thinking of \mathbb{Q} only as a subfield of \mathbb{R} obscures its "arithmetic content." The following example attempts to illustrate this:

Example. Plotting $x = \frac{998}{999}$, $y = \frac{999}{1000}$, and 1 on the real line makes it seem like $x \approx y \approx 1$. But under *p*-adic absolute values, we see big differences:

	p=2	p = 3	p = 5	p = 37	p = 499	all other primes
$ x _p$	$\frac{1}{2}$	27	1	37	$\frac{1}{499}$	1
$ y _p$	8	$\frac{1}{27}$	25	$\frac{1}{37}$	1	1
$ y _p$	1	1	1	1	1	1

The Local-to-Global Principle

To study/prove things about \mathbb{Q} , we study **all** of the local fields

$$\mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \dots, \mathbb{Q}_\infty = \mathbb{R}$$

which we embed \mathbb{Q} into.

Theorem (Artin's Product Formula). If $x \in \mathbb{Q}^{\times}$, then $\prod_{p \leq \infty} |x|_p = 1$.