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Preparing for Kummer Congruences

Bernoulli Numbers and Zeta Functions

Definition. The Bernoulli polynomials (Bn(x))∞n=0 are implicitly defined for all x ∈ C by the
generating function

zexz

ez − 1
=

∞∑

n=0

Bn(x)
zn

n!

Note that the above series converges absolutely for z ∈ C satisfying |z| < 2π, so we can
use Taylor’s formula to compute the Bn(x) terms:

Bn(x) =
dn

dzn

(
zexz

ez − 1

) ∣∣
∣
∣
z=0

We can immediately compute the first few of these polynomials:

B0(x) = 1

B1(x) = x −
1

2

B2(x) = x2 − x +
1

6

B3(x) = x3 −
3

2
x2 +

1

2
x

and so on.

Definition. For each n ≥ 0, the nth periodic Bernoulli polynomial is the function

Pn : R→ R

Pn(X) := Bn (bXc) .

The nth Bernoulli number is Bn := Bn(0).
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We can immediately observe the following properties:

i.
∑∞

n=0 (Bn(1) − Bn(0)) zn

n!
= zez

ez−1
− z

ez−1
= z = z1

1!
. So Bn(1) = Bn(0) for all n 6= 1.

Consequently, each Pn is continuous for n 6= 1.

ii. The function f : B2π(0) → C (where B2π(0) is the disk of radius 2π in C) given by
f(z) = z

2

(
ez+1
ez−1

)
satisfies f(−z) = f(z), so f is an even function of z. But

f(z) =
z

2

(

1 +
2

ez − 1

)

=
z

2
+

∞∑

n=0

Bn ∙
zn

n!

= B0 +

(

B1 +
1

2

)

z + B2 ∙
z2

2!
+ B3 ∙

z3

3!
+ ∙ ∙ ∙

So B1 = −1
2

and Bn = 0 for all odd n > 1.

Theorem (Kummer’s Congruence, 1851). Fix p > 2, r ∈ {1, 2, . . . , p − 2}, and define

Sr := {r + m(p − 1) | m ∈ Z≥0}.

Then for all k ∈ Sr,
Bk
k ∈ Z(p), and for all k, k′ ∈ Sr,

(
1 − pk−1

) Bk

k
≡
(
1 − pk′−1

) Bk′

k′ (mod pn+1Z(p))

whenever k ≡ k′ (mod pnZ).

Proof. Since Z(p) ⊆ Zp, we have a function g : Sr → Zp defined by g(k) :=
(
1 − pk−1

)
Bk

k
,

and g satisfies

|k − k′|p ≤ p−n =⇒ |g(k) − g(k′)|p ≤ p−(n+1)

for all k, k′ ∈ Sr. That is, g is uniformly continuous on Sr, hence extends uniquely to a
continuous function Zp → Zp. �

What is g, really?

Exercise. Show that Sr is dense in Zp.

A Foray into Fourier Series

Definition. Suppose f : R→ C is integrable on [0, 1]. The Fourier coefficients of f are defined
by

cn :=
∫ 1

0
f(x)e−2πinx dx

for all n ∈ Z. The Fourier series for f is defined by

Sf (x) :=
∑

n∈Z

cne2πinx

for all x ∈ R such that the series converges.
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Theorem (∼ 1820, Corollary of a theorem of Dirichlet). If f : R → C is 1-periodic, continuous,
and differentiable on R \ Z with bounded derivative, then Sf (x) converges absolutely uniformly to
f(x). In particular, we may say that

f(x) = Sf (x).

We will not prove this for the sake of time. We will apply this to Pm with m 6= 1.

Proposition. For m ≥ 2, Pm is given by this absolutely uniformly convergent series:

Pm(x) := −
2 ∙ m!
(2π)m

∞∑

n=1

1
nm

cos
(
2πnx −

π

2
m
)
.

Proof. Exercise. �

Consequently, if k ∈ N, we have

B2k = P2k(0) = −
2(2k)!

(2π)2k
∙

∞∑

n=1

1

n2k
cos (−πk)

= (−1)k+1 ∙
2(2k)!

(2π)2k
∙ ζ(2k).

Corollary. For all k ∈ N, ζ(2k) = (2π)2k

2(2k)! (−1)k+1B2k. �

We enumerate the first few terms:

(ζ(2k))∞k=1 =

(
π2

6
,
π4

80
,

π6

945
, . . .

)

and so on.

Proposition (Some facts about ζ).

i. For all s ∈ C with <(s) > 1, ζ(s) =
∑∞

n=1
1
ns can be written as an Euler product

ζ(s) =
∏

p prime

1
1 − p−s

ii. ζ is holomorphic on its domain, i.e.

ζ ′(s) = lim
h→0

ζ(s + h) − ζ(s)
h

exists for all s ∈ C satisfying ζ(s) > 1.
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