MATH8510
 Lecture 11 Notes

Charlie Conneen

September 19, 2022

Preparing for Kummer Congruences

Bernoulli Numbers and Zeta Functions

Definition. The Bernoulli polynomials $\left(B_{n}(x)\right)_{n=0}^{\infty}$ are implicitly defined for all $x \in \mathbb{C}$ by the generating function

$$
\frac{z e^{x z}}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!}
$$

Note that the above series converges absolutely for $z \in \mathbb{C}$ satisfying $|z|<2 \pi$, so we can use Taylor's formula to compute the $B_{n}(x)$ terms:

$$
B_{n}(x)=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}}\left(\frac{z e^{x z}}{e^{z}-1}\right)\right|_{z=0}
$$

We can immediately compute the first few of these polynomials:

$$
\begin{aligned}
& B_{0}(x)=1 \\
& B_{1}(x)=x-\frac{1}{2} \\
& B_{2}(x)=x^{2}-x+\frac{1}{6} \\
& B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x
\end{aligned}
$$

and so on.
Definition. For each $n \geq 0$, the $n^{\text {th }}$ periodic Bernoulli polynomial is the function

$$
\begin{gathered}
P_{n}: \mathbb{R} \rightarrow \mathbb{R} \\
P_{n}(X):=B_{n}(\lfloor X\rfloor) .
\end{gathered}
$$

The $n^{\text {th }}$ Bernoulli number is $B_{n}:=B_{n}(0)$.

We can immediately observe the following properties:
i. $\sum_{n=0}^{\infty}\left(B_{n}(1)-B_{n}(0)\right) \frac{z^{n}}{n!}=\frac{z z^{z}}{e^{z}-1}-\frac{z}{e^{z}-1}=z=\frac{z^{1}}{1!}$. So $B_{n}(1)=B_{n}(0)$ for all $n \neq 1$. Consequently, each P_{n} is continuous for $n \neq 1$.
ii. The function $f: B_{2 \pi}(0) \rightarrow \mathbb{C}$ (where $B_{2 \pi}(0)$ is the disk of radius 2π in \mathbb{C}) given by $f(z)=\frac{z}{2}\left(\frac{e^{z}+1}{e^{z}-1}\right)$ satisfies $f(-z)=f(z)$, so f is an even function of z. But

$$
\begin{aligned}
f(z) & =\frac{z}{2}\left(1+\frac{2}{e^{z}-1}\right)=\frac{z}{2}+\sum_{n=0}^{\infty} B_{n} \cdot \frac{z^{n}}{n!} \\
& =B_{0}+\left(B_{1}+\frac{1}{2}\right) z+B_{2} \cdot \frac{z^{2}}{2!}+B_{3} \cdot \frac{z^{3}}{3!}+\cdots
\end{aligned}
$$

So $B_{1}=-\frac{1}{2}$ and $B_{n}=0$ for all odd $n>1$.
Theorem (Kummer's Congruence, 1851). Fix $p>2, r \in\{1,2, \ldots, p-2\}$, and define

$$
S_{r}:=\left\{r+m(p-1) \mid m \in \mathbb{Z}_{\geq 0}\right\} .
$$

Then for all $k \in S_{r}, \frac{B_{k}}{k} \in \mathbb{Z}_{(p)}$, and for all $k, k^{\prime} \in S_{r}$,

$$
\left(1-p^{k-1}\right) \frac{B_{k}}{k} \equiv\left(1-p^{k^{\prime}-1}\right) \frac{B_{k^{\prime}}}{k^{\prime}} \quad\left(\bmod p^{n+1} \mathbb{Z}_{(p)}\right)
$$

whenever $k \equiv k^{\prime}\left(\bmod p^{n} \mathbb{Z}\right)$.
Proof. Since $\mathbb{Z}_{(p)} \subseteq \mathbb{Z}_{p}$, we have a function $g: S_{r} \rightarrow \mathbb{Z}_{p}$ defined by $g(k):=\left(1-p^{k-1}\right) \frac{B_{k}}{k}$, and g satisfies

$$
\left|k-k^{\prime}\right|_{p} \leq p^{-n} \Longrightarrow\left|g(k)-g\left(k^{\prime}\right)\right|_{p} \leq p^{-(n+1)}
$$

for all $k, k^{\prime} \in S_{r}$. That is, g is uniformly continuous on S_{r}, hence extends uniquely to a continuous function $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$.

What is g, really?
Exercise. Show that S_{r} is dense in \mathbb{Z}_{p}.

A Foray into Fourier Series

Definition. Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ is integrable on $[0,1]$. The Fourier coefficients of f are defined by

$$
c_{n}:=\int_{0}^{1} f(x) e^{-2 \pi i n x} \mathrm{~d} x
$$

for all $n \in \mathbb{Z}$. The Fourier series for f is defined by

$$
S_{f}(x):=\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi i n x}
$$

for all $x \in \mathbb{R}$ such that the series converges.

Theorem (~ 1820, Corollary of a theorem of Dirichlet). If $f: \mathbb{R} \rightarrow \mathbb{C}$ is 1-periodic, continuous, and differentiable on $\mathbb{R} \backslash \mathbb{Z}$ with bounded derivative, then $S_{f}(x)$ converges absolutely uniformly to $f(x)$. In particular, we may say that

$$
f(x)=S_{f}(x) .
$$

We will not prove this for the sake of time. We will apply this to P_{m} with $m \neq 1$.
Proposition. For $m \geq 2, P_{m}$ is given by this absolutely uniformly convergent series:

$$
P_{m}(x):=-\frac{2 \cdot m!}{(2 \pi)^{m}} \sum_{n=1}^{\infty} \frac{1}{n^{m}} \cos \left(2 \pi n x-\frac{\pi}{2} m\right) .
$$

Proof. Exercise.
Consequently, if $k \in \mathbb{N}$, we have

$$
\begin{aligned}
B_{2 k} & =P_{2 k}(0)=-\frac{2(2 k)!}{(2 \pi)^{2 k}} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{2 k}} \cos (-\pi k) \\
& =(-1)^{k+1} \cdot \frac{2(2 k)!}{(2 \pi)^{2 k}} \cdot \zeta(2 k) .
\end{aligned}
$$

Corollary. For all $k \in \mathbb{N}, \zeta(2 k)=\frac{(2 \pi)^{2 k}}{2(2 k)!}(-1)^{k+1} B_{2 k}$.
We enumerate the first few terms:

$$
(\zeta(2 k))_{k=1}^{\infty}=\left(\frac{\pi^{2}}{6}, \frac{\pi^{4}}{80}, \frac{\pi^{6}}{945}, \ldots\right)
$$

and so on.
Proposition (Some facts about ζ).
i. For all $s \in \mathbb{C}$ with $\Re(s)>1, \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ can be written as an Euler product

$$
\zeta(s)=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

ii. ζ is holomorphic on its domain, i.e.

$$
\zeta^{\prime}(s)=\lim _{h \rightarrow 0} \frac{\zeta(s+h)-\zeta(s)}{h}
$$

exists for all $s \in \mathbb{C}$ satisfying $\zeta(s)>1$.

