MATH8510 Lecture 12 Notes

Charlie Conneen

September 19, 2022

Important Gadgets from Fourier Analysis

Definition. The space of functions $f \colon \mathbb{R} \to \mathbb{C}$ with finite 1-norm, i.e. all such f satisfying

$$||f|| \coloneqq \int_{\mathbb{R}} |f(x)| \, \mathrm{d}x < \infty$$

is denoted $L^1(\mathbb{R})$.

Definition. The space of **Schwartz-Bruhat functions** $\mathcal{S}(\mathbb{R})$ may be defined as

$$\mathcal{S}(\mathbb{R}) \coloneqq \left\{ f \colon \mathbb{R} \to \mathbb{C} \mid m^n D^k f \text{ is bounded } \forall n, k \ge 0 \right\}$$

where m and D are the operators defined by $(mf)(x) \coloneqq 2\pi i \cdot f(x)$, and $D = \frac{\mathrm{d}}{\mathrm{d}x}$.

Proposition. $(L^1(\mathbb{R}), \|\cdot\|)$ is a complete normed \mathbb{C} -vector space (Banach space), and $\mathcal{S}(\mathbb{R})$ is a dense subspace of $L^1(\mathbb{R})$.

We will not prove this proposition, as it is usually covered in a first graduate course in real analysis.¹

The "normalized Gaussians" $g_c \colon \mathbb{R} \to \mathbb{C}$ given by

$$g_c(x) \coloneqq \sqrt{\frac{c}{\pi}} \cdot e^{-cx^2}$$

with c > 0 are important elements of $\mathcal{S}(\mathbb{R})$ satisfying

$$\int_{\mathbb{R}} g_c(x) \, \mathrm{d}x = 1$$

Definition. If $f \in L^1(\mathbb{R})$, its Fourier transform $\widehat{f} \colon \mathbb{R} \to \mathbb{C}$ is defined by

$$\widehat{f}(t) \coloneqq \int_{\mathbb{R}} f(x) e^{-2\pi i t x} \, \mathrm{d}x.$$

¹One reference which may be of use is Rudin's "Real and Complex Analysis."

We have a few basic facts about the Fourier transform:

(a) The Fourier transform is a \mathbb{C} -linear map

$$\widehat{(-)}: L^1(\mathbb{R}) \to C_0(\mathbb{R})$$

where $C_0(\mathbb{R}) = \{g \colon \mathbb{R} \to \mathbb{C} \mid |g(t)| \to 0 \text{ as } |t| \to \infty\}.$

- (b) Suppose $f \in L^1(\mathbb{R})$.
 - i. If $\alpha \in \mathbb{R}^{\times}$, then

$$\widehat{f(\alpha x + \beta)}(t) = \frac{e^{-2\pi i\beta t}}{|\alpha|} \cdot \widehat{f}\left(\frac{t}{\alpha}\right)$$

ii. If Df exists and $Df \in L^1(\mathbb{R})$, then $\widehat{Df} = m\widehat{f}$, i.e. the following diagram commutes:

when it makes sense.

iii. If $Df, D^2f, D^3f, \ldots, D^nf \in L^1(\mathbb{R})$, then induction yields

$$\widehat{D^n f} = m^n \widehat{f}$$

and therefore for some $c \ge 0$,

$$\left|\widehat{f}(t)\right| \le \frac{c}{\left|t\right|^n}$$

In other words, the more smooth that f is, the faster that \widehat{f} decays.

- iv. Similarly, if $mf, m^2f, \ldots, m^nf \in L^1(\mathbb{R})$, induction yields that $\widehat{m^nf} = (-D)^n\widehat{f}$, and thus \widehat{f} is *n*-differentiable. In other words, the faster that f decays, the smoother that \widehat{f} is.
- (c) Restricting the Fourier transform to $\mathcal{S}(\mathbb{R})$ yields an automorphism $\mathcal{S}(\mathbb{R}) \xrightarrow{(-)} \mathcal{S}(\mathbb{R})$ that is L^2 -isometric, i.e.

$$\int_{\mathbb{R}} |f(x)|^2 \, \mathrm{d}x = \int_{\mathbb{R}} \left| \widehat{f}(t) \right|^2 \, \mathrm{d}t$$

for all $f \in \mathcal{S}(\mathbb{R})$.

(d) (opinion) The best normalized Gaussian is $g_{\pi}(x) = e^{-\pi x^2}$. This is because

$$\widehat{g_{\pi}}(t) = \int_{\mathbb{R}} g_{\pi}(x) \cdot e^{-2\pi i t x} \, \mathrm{d}x = \int_{\mathbb{R}} e^{-\pi (x^2 + 2i t x)} \, \mathrm{d}x$$
$$= \int_{\mathbb{R}} e^{-\pi ((x+it)^2 + t^2)} \, \mathrm{d}x = g_{\pi}(t) \cdot \int_{\mathbb{R}} g_{\pi}(x+it) \, \mathrm{d}x$$
$$= g_{\pi}(t) \cdot \int_{\mathbb{R}+it} g_{\pi}(z) \, \mathrm{d}x = g_{\pi}(t).$$

So g_{π} is a fixed point of $\widehat{(-)}$.

Theorem (Poisson Summation). If $f \in \mathcal{S}(\mathbb{R})$, then

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{k \in \mathbb{Z}} \widehat{f}(k).$$

Proof. Suppose $f \in \mathcal{S}(\mathbb{R})$. There exists some c > 0 such that

$$|f(x)| \le \frac{c}{1+x^2}$$

for all $x \in \mathbb{R}$. So for every $x \in [0, 1]$ and every $n \in \mathbb{Z}$, we have

$$|f(x+n)| \le \begin{cases} c & n = 0\\ \frac{c}{1 + (|n| - 1)^2} & n \ne 0 \end{cases}$$

Then $\sum_{n\in\mathbb{Z}} f(x+n)$ converges absolutely and uniformly for all $x \in [0,1]$ by the Weierstrass *M*-test. The same works for $\sum_{n\in\mathbb{Z}} f'(x+n)$. Therefore $P_f(x) \coloneqq \sum_{n\in\mathbb{Z}} f(x+n)$ (the "periodization" of *f*) is continuous and integrable term-by-term for all $x \in [0,1]$, and differentiable term-by-term for all $x \in (0,1)$. But P_f is 1-periodic. So everything we said about [0,1] extends to all of \mathbb{R} . Furthermore, everything we said about (0,1) extends to $\mathbb{R} \setminus \mathbb{Z}$. Also note that P'_f is bounded where it exists, so by a theorem from last lecture, P_f is equal to its own (absolutely uniformly convergent) Fourier series:

$$P_f(x) = \sum_{k \in \mathbb{Z}} c_k e^{2\pi i k x}$$

where $c_k = \int_0^1 P_f(x) e^{-2\pi i k x} dx$. So we may compute c_k as follows:

$$c_{k} = \sum_{n \in \mathbb{Z}} \int_{0}^{1} f(x+n) e^{-2\pi i k x} \, \mathrm{d}x = \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} f(y) e^{-2\pi i k (y-n)} \, \mathrm{d}y$$
$$= \sum_{n \in \mathbb{Z}} \left(\int_{n}^{n+1} f(y) e^{-2\pi i k y} \, \mathrm{d}y \right) e^{2\pi i k n} = \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} f(y) e^{-2\pi i k y} \, \mathrm{d}y$$
$$= \int_{\mathbb{R}} f(y) e^{-2\pi i k y} \, \mathrm{d}y = \widehat{f}(k).$$

Consequently:

$$\sum_{n \in \mathbb{Z}} f(x+n) = P_f(x) = \sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{2\pi i k x}$$

for all $x \in \mathbb{R}$. So evaluating this at 0 yields the proof.