MATH8510
 Lecture 12 Notes

Charlie Conneen

September 19, 2022

Important Gadgets from Fourier Analysis

Definition. The space of functions $f: \mathbb{R} \rightarrow \mathbb{C}$ with finite 1-norm, i.e. all such f satisfying

$$
\|f\|:=\int_{\mathbb{R}}|f(x)| \mathrm{d} x<\infty
$$

is denoted $L^{1}(\mathbb{R})$.
Definition. The space of Schwartz-Bruhat functions $\mathcal{S}(\mathbb{R})$ may be defined as

$$
\mathcal{S}(\mathbb{R}):=\left\{f: \mathbb{R} \rightarrow \mathbb{C} \mid m^{n} D^{k} f \text { is bounded } \forall n, k \geq 0\right\}
$$

where m and D are the operators defined by $(m f)(x):=2 \pi i \cdot f(x)$, and $D=\frac{\mathrm{d}}{\mathrm{d} x}$.
Proposition. $\left(L^{1}(\mathbb{R}),\|\cdot\|\right)$ is a complete normed \mathbb{C}-vector space (Banach space), and $\mathcal{S}(\mathbb{R})$ is a dense subspace of $L^{1}(\mathbb{R})$.

We will not prove this proposition, as it is usually covered in a first graduate course in real analysis. ${ }^{1}$

The "normalized Gaussians" $g_{c}: \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
g_{c}(x):=\sqrt{\frac{c}{\pi}} \cdot e^{-c x^{2}}
$$

with $c>0$ are important elements of $\mathcal{S}(\mathbb{R})$ satisfying

$$
\int_{\mathbb{R}} g_{c}(x) \mathrm{d} x=1 .
$$

Definition. If $f \in L^{1}(\mathbb{R})$, its Fourier transform $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ is defined by

$$
\widehat{f}(t):=\int_{\mathbb{R}} f(x) e^{-2 \pi i t x} \mathrm{~d} x .
$$

[^0]We have a few basic facts about the Fourier transform:
(a) The Fourier transform is a \mathbb{C}-linear map

$$
\widehat{(-)}: L^{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})
$$

where $C_{0}(\mathbb{R})=\{g: \mathbb{R} \rightarrow \mathbb{C}| | g(t) \mid \rightarrow 0$ as $|t| \rightarrow \infty\}$.
(b) Suppose $f \in L^{1}(\mathbb{R})$.
i. If $\alpha \in \mathbb{R}^{\times}$, then

$$
\widehat{f(\alpha x+\beta)}(t)=\frac{e^{-2 \pi i \beta t}}{|\alpha|} \cdot \widehat{f}\left(\frac{t}{\alpha}\right)
$$

ii. If $D f$ exists and $D f \in L^{1}(\mathbb{R})$, then $\widehat{D f}=m \widehat{f}$, i.e. the following diagram commutes:

when it makes sense.
iii. If $D f, D^{2} f, D^{3} f, \ldots, D^{n} f \in L^{1}(\mathbb{R})$, then induction yields

$$
\widehat{D^{n} f}=m^{n} \widehat{f}
$$

and therefore for some $c \geq 0$,

$$
|\widehat{f}(t)| \leq \frac{c}{|t|^{n}}
$$

In other words, the more smooth that f is, the faster that \widehat{f} decays.
iv. Similarly, if $m f, m^{2} f, \ldots, m^{n} f \in L^{1}(\mathbb{R})$, induction yields that $\widehat{m^{n} f}=(-D)^{n} \widehat{f}$, and thus \widehat{f} is n-differentiable. In other words, the faster that f decays, the smoother that \widehat{f} is.
(c) Restricting the Fourier transform to $\mathcal{S}(\mathbb{R})$ yields an automorphism $\mathcal{S}(\mathbb{R}) \xrightarrow{\widehat{(-)}} \mathcal{S}(\mathbb{R})$ that is L^{2}-isometric, i.e.

$$
\int_{\mathbb{R}}|f(x)|^{2} \mathrm{~d} x=\int_{\mathbb{R}}|\widehat{f}(t)|^{2} \mathrm{~d} t
$$

for all $f \in \mathcal{S}(\mathbb{R})$.
(d) (opinion) The best normalized Gaussian is $g_{\pi}(x)=e^{-\pi x^{2}}$. This is because

$$
\begin{aligned}
\widehat{g_{\pi}(t)} & =\int_{\mathbb{R}} g_{\pi}(x) \cdot e^{-2 \pi i t x} \mathrm{~d} x=\int_{\mathbb{R}} e^{-\pi\left(x^{2}+2 i t x\right.} \mathrm{d} x \\
& =\int_{\mathbb{R}} e^{-\pi\left((x+i t)^{2}+t^{2}\right)} \mathrm{d} x=g_{\pi}(t) \cdot \int_{\mathbb{R}} g_{\pi}(x+i t) \mathrm{d} x \\
& =g_{\pi}(t) \cdot \int_{\mathbb{R}+i t} g_{\pi}(z) \mathrm{d} x=g_{\pi}(t) .
\end{aligned}
$$

So g_{π} is a fixed point of $\widehat{(-)}$.
Theorem (Poisson Summation). If $f \in \mathcal{S}(\mathbb{R})$, then

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{k \in \mathbb{Z}} \widehat{f}(k) .
$$

Proof. Suppose $f \in \mathcal{S}(\mathbb{R})$. There exists some $c>0$ such that

$$
|f(x)| \leq \frac{c}{1+x^{2}}
$$

for all $x \in \mathbb{R}$. So for every $x \in[0,1]$ and every $n \in \mathbb{Z}$, we have

$$
|f(x+n)| \leq\left\{\begin{array}{cl}
c & n=0 \\
\frac{c}{1+(|n|-1)^{2}} & n \neq 0
\end{array}\right.
$$

Then $\sum_{n \in \mathbb{Z}} f(x+n)$ converges absolutely and uniformly for all $x \in[0,1]$ by the Weierstrass M-test. The same works for $\sum_{n \in \mathbb{Z}} f^{\prime}(x+n)$. Therefore $P_{f}(x):=\sum_{n \in \mathbb{Z}} f(x+n)$ (the "periodization" of f) is continuous and integrable term-by-term for all $x \in[0,1]$, and differentiable term-by-term for all $x \in(0,1)$. But P_{f} is 1-periodic. So everything we said about $[0,1]$ extends to all of \mathbb{R}. Furthermore, everything we said about $(0,1)$ extends to $\mathbb{R} \backslash \mathbb{Z}$. Also note that P_{f}^{\prime} is bounded where it exists, so by a theorem from last lecture, P_{f} is equal to its own (absolutely uniformly convergent) Fourier series:

$$
P_{f}(x)=\sum_{k \in \mathbb{Z}} c_{k} e^{2 \pi i k x}
$$

where $c_{k}=\int_{0}^{1} P_{f}(x) e^{-2 \pi i k x} \mathrm{~d} x$. So we may compute c_{k} as follows:

$$
\begin{aligned}
c_{k} & =\sum_{n \in \mathbb{Z}} \int_{0}^{1} f(x+n) e^{-2 \pi i k x} \mathrm{~d} x=\sum_{n \in \mathbb{Z}} \int_{n}^{n+1} f(y) e^{-2 \pi i k(y-n)} \mathrm{d} y \\
& =\sum_{n \in \mathbb{Z}}\left(\int_{n}^{n+1} f(y) e^{-2 \pi i k y} \mathrm{~d} y\right) e^{2 \pi i k n}=\sum_{n \in \mathbb{Z}} \int_{n}^{n+1} f(y) e^{-2 \pi i k y} \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y) e^{-2 \pi i k y} \mathrm{~d} y=\widehat{f}(k) .
\end{aligned}
$$

Consequently:

$$
\sum_{n \in \mathbb{Z}} f(x+n)=P_{f}(x)=\sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{2 \pi i k x}
$$

for all $x \in \mathbb{R}$. So evaluating this at 0 yields the proof.

[^0]: ${ }^{1}$ One reference which may be of use is Rudin's "Real and Complex Analysis."

