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Important Gadgets from Fourier Analysis

Definition. The space of functions f : R→ C with finite 1-norm, i.e. all such f satisfying

‖f‖ :=
∫

R
|f(x)| dx < ∞,

is denoted L1(R).

Definition. The space of Schwartz-Bruhat functions S(R) may be defined as

S(R) :=
{

f : R→ C | mnDkf is bounded ∀n, k ≥ 0
}

where m and D are the operators defined by (mf)(x) := 2πi ∙ f(x), and D = d
dx .

Proposition.
(
L1(R), ‖ ∙ ‖

)
is a complete normed C-vector space (Banach space), and S(R) is a

dense subspace of L1(R).

We will not prove this proposition, as it is usually covered in a first graduate course in
real analysis.1

The “normalized Gaussians” gc : R→ C given by

gc(x) :=

√
c

π
∙ e−cx2

with c > 0 are important elements of S(R) satisfying

∫

R
gc(x) dx = 1.

Definition. If f ∈ L1(R), its Fourier transform f̂ : R→ C is defined by

f̂(t) :=
∫

R
f(x)e−2πitx dx.

1One reference which may be of use is Rudin’s “Real and Complex Analysis.”
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We have a few basic facts about the Fourier transform:

(a) The Fourier transform is a C-linear map

(̂−) : L1(R) → C0(R)

where C0(R) = {g : R→ C | |g(t)| → 0 as |t| → ∞}.

(b) Suppose f ∈ L1(R).

i. If α ∈ R×, then

f(αx + β)
∧

(t) =
e−2πiβt

|α|
∙ f̂

(
t

α

)

ii. If Df exists and Df ∈ L1(R), then D̂f = mf̂ , i.e. the following diagram com-
mutes:

f Df

f̂ mf̂ = D̂f

D

(̂−)(̂−)

m

when it makes sense.

iii. If Df,D2f,D3f, . . . , Dnf ∈ L1(R), then induction yields

Dnf
∧

= mnf̂

and therefore for some c ≥ 0,

∣
∣
∣f̂(t)

∣
∣
∣ ≤

c

|t|n

In other words, the more smooth that f is, the faster that f̂ decays.

iv. Similarly, if mf,m2f, . . . ,mnf ∈ L1(R), induction yields that m̂nf = (−D)nf̂ ,

and thus f̂ is n-differentiable. In other words, the faster that f decays, the
smoother that f̂ is.

(c) Restricting the Fourier transform to S(R) yields an automorphism S(R)
(̂−)
−−→ S(R)

that is L2-isometric, i.e.

∫

R
|f(x)|2 dx =

∫

R

∣
∣
∣f̂(t)

∣
∣
∣
2

dt

for all f ∈ S(R).
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(d) (opinion) The best normalized Gaussian is gπ(x) = e−πx2
. This is because

ĝπ(t) =

∫

R
gπ(x) ∙ e−2πitx dx =

∫

R
e−π(x2+2itx dx

=

∫

R
e−π((x+it)2+t2) dx = gπ(t) ∙

∫

R
gπ(x + it) dx

= gπ(t) ∙
∫

R+it

gπ(z) dx = gπ(t).

So gπ is a fixed point of (̂−).

Theorem (Poisson Summation). If f ∈ S(R), then

∑

n∈Z

f(n) =
∑

k∈Z

f̂(k).

Proof. Suppose f ∈ S(R). There exists some c > 0 such that

|f(x)| ≤
c

1 + x2

for all x ∈ R. So for every x ∈ [0, 1] and every n ∈ Z, we have

|f(x + n)| ≤






c n = 0
c

1 + (|n| − 1)2 n 6= 0

Then
∑

n∈Z f(x + n) converges absolutely and uniformly for all x ∈ [0, 1] by the Weier-
strass M -test. The same works for

∑
n∈Z f ′(x + n). Therefore Pf (x) :=

∑
n∈Z f(x + n) (the

“periodization” of f) is continuous and integrable term-by-term for all x ∈ [0, 1], and differ-
entiable term-by-term for all x ∈ (0, 1). But Pf is 1-periodic. So everything we said about
[0, 1] extends to all of R. Furthermore, everything we said about (0, 1) extends to R \ Z.
Also note that P ′

f is bounded where it exists, so by a theorem from last lecture, Pf is equal
to its own (absolutely uniformly convergent) Fourier series:

Pf (x) =
∑

k∈Z

cke
2πikx

where ck =
∫ 1

0
Pf (x)e−2πikx dx. So we may compute ck as follows:

ck =
∑

n∈Z

∫ 1

0

f(x + n)e−2πikx dx =
∑

n∈Z

∫ n+1

n

f(y)e−2πik(y−n) dy

=
∑

n∈Z

(∫ n+1

n

f(y)e−2πiky dy

)

e2πikn =
∑

n∈Z

∫ n+1

n

f(y)e−2πiky dy

=

∫

R
f(y)e−2πiky dy = f̂(k).
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Consequently:

∑

n∈Z

f(x + n) = Pf (x) =
∑

k∈Z

f̂(k)e2πikx

for all x ∈ R. So evaluating this at 0 yields the proof. �
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