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Wrapping up on Fourier analysis

Last lecture, we showed that if f ∈ L1(R) and α ∈ R×, then

f(αx)
∧

(t) =
1

|α|
f̂

(
t

α

)

for all t ∈ R. Furthermore, if f ∈ S(R), then

∑

n∈Z

f(n) =
∑

k∈Z

f̂(k).

Corollary. If f ∈ S(R) and α ∈ R×, then

∑

n∈Z

f(αn) =
1
|α|

∙
∑

k∈Z

f̂

(
k

α

)

Definition. The Jacobi Theta Function ϑ : (0,∞) → (0,∞) is defined as

ϑ(t) :=
∑

n∈Z

e−πn2t

Remark. Sometimes “the Jacobi Theta Function” refers to the holomorphic map

ϑ(z;q) =
∑

n∈Z

qn2
e2πiz

where q = eiπτ for some choice of τ ∈ C.

Proposition. ϑ(t) = 1√
t
∙ ϑ
(

1
t

)
.

Proof. Recall gπ(x) = e−πx2
. Then

ϑ(t) =
∑

n∈Z

gπ(
√

t ∙ n) =
1
√

t
∙
∑

k∈Z

ĝπ

(
k
√

t

)

=
1
√

t
∙ ϑ

(
1

t

)

�
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Important Gadgets from Complex Analysis

H(−) will denote the sheaf of holomorphic functions on C, that is, the sheaf given by

H(Ω) = {f : Ω → C | f ′ exists}.

Theorem. If f ∈ H(Ω) and Ω′ ⊆ C is a connected open set containing Ω, then there is at most
one F ∈ H(Ω′) such that F

∣
∣
Ω

= f . Such an F is called the analytic continuation of f .

This is essentially the identity axiom for sheaves. In general, we want to know the largest
possible Ω′ for f . Even if the equation defining f on Ω is nonsense on Ω′, if forced to remain
holomorphic, the function “knows” how to extend itself to the largest possible domain.

Example. Let φ+ =
√

5+1
2 = limn→∞

Fn+1

Fn
and φ− =

√
5−1
2 = 1

φ+
, where (Fn)n =

(0, 1, 1, 2, 3, 5, 8, 13, . . .) is the Fibonacci sequence. Then f(s) :=
∑∞

n=0 Fnsn defines a function
f ∈ H(Ω) where

Ω = {s ∈ C | |s| < φ−}

Observe that f(s) is undefined for s /∈ Ω. Now let Ω′ = C \ {φ+, φ−}, and note that Ω ⊆ Ω′ and Ω′

is connected. Then the function F ∈ H(Ω′) given by

F (s) =
s

(s − φ+)(s − φ−)

satisfies F
∣
∣
Ω

= f .

In summary, F is uniquely determined by the following properties:

1. F (s) =
∑∞

n=0 Fnsn whenever |s| < φ−;

2. F is holomorphic;

3. The domain of F is as large as possible.

Definition. Let Ω = {s ∈ C | <(s) > 0} and define γ : Ω → C by

γ(s) :=
∫ ∞

0
e−xxs−1 dx.

Then the Gamma function Γ is defined to be the analytic continuation of γ.

Exercise. Show that the following hold:

1. γ(s + 1) = s ∙ γ(s) for all s ∈ Ω;

2. γ ∈ H(Ω);

3. γ
(

1
2

)
=

√
π.

Theorem (Bohr-Mollerup, 1922). γ is the unique function f : (0,∞) → (0,∞) satisfying
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1. log(f(x)) is convex;

2. f(1) = 1; and

3. f(x + 1) = x ∙ f(x).

Definition. Let Ω′ = C \ {0,−1,−2,−3, . . .} and Γ: Ω′ → C by

Γ(s) :=

{
γ(s) <(s) > 0
1
s ∙ Γ(s + 1) <(s) ≤ 0

Now we claim that Γ is holomorphic on Ω′. If s ∈ Ω′ \Ω, then <(s) ≤ 0 and there exists
a least n ∈ N such that 0 < <(s + n) ≤ 1. So

Γ(s) =
1

s
∙ Γ(s + 1) =

1

s(s + 1)
∙ Γ(s + 2)

= ∙ ∙ ∙ =
1

s(s + 1)(s + 2) ∙ ∙ ∙ (s + (n − 1))
∙ γ(s + n)

So we have the following immediate consequences:

1. γ ∈ H(Ω) =⇒ Γ ∈ H(Ω′), and

2. γ 6= 0 on Ω means Γ is never 0 on Ω′, and thus Γ has a simple pole of residue (−1)n

n!
at

each −n ∈ {0,−1,−2,−3, . . .}. In other words,

lim
s→−n

(s + n)Γ(s) =
(−1)n

n!

In summary, Γ is the unique function Ω′ → C with the following properties:

1. Γ(s) =
∫∞

0
e−xxs−1 dx if <(s) > 0;

2. Γ ∈ H(Ω′); and

3. the domain of Γ cannot be made any larger.

So we will refer to Γ as the Gamma function.

Remark. We mentioned above that Γ is nonzero on its entire domain. This is very nice because, in
particular, this means 1

Γ ∈ H(C) is an entire function. Furthermore, because Γ has a simple pole
at each −n ∈ {0,−1,−2,−3, . . .}, 1

Γ has a simple zero at each such −n.
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