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Riemann’s Functional Equation

Definition. Let Ω = {s ∈ C | <(s) > 1}, and define ζ : Ω → C by

ζ(s) :=
∏

p prime

1
1 − p−s

=
∞∑

n=1

1
ns

.

Our current goal is to find the analytic continuation of ζ to the largest possible Ω′ ⊇ Ω,
and give a formula for the analytic continuation when s ∈ Ω′ \Ω. We will start this process
by defining an auxiliary function

f(s) :=

∫ ∞

1

(
ϑ(t) − 1

2

)

t
s
2
−1 dt.

Note that f(s) is defined for all s ∈ C:

1. If <(s) ≤ 2, then
∣
∣t

s
2

∣
∣ ≤ 1 for all t ∈ [0,∞).

2. If <(s) > 2, then
∣
∣t

s
2
−1
∣
∣ increases with t, but not fast enough to prevent convergence,

as ϑ(t)−1
2

decays so rapidly.

Exercise. Show that f is entire.

Definition. We define ξ : C \ {0, 1} → C by

ξ(s) := f(s) + f(1 − s) −

(
1
s
−

1
1 − s

)

.

By properties of f , we can see immediately that the following conditions hold:

1. ξ ∈ H(C \ {0, 1});

2. ξ(1 − s) = ξ(s) for all s ∈ C \ {0, 1};

3. lims→1 (s − 1) ∙ ξ(s) = 1, and lims→0 s ∙ ξ(s) = 1.
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But what really is ξ? Well,

f(1 − s) =

∫ ∞

1

(
ϑ(u) − 1

2

)

e
1−s
2

−1 du =

∫ 1

0

(
ϑ
(

1
t

)
− 1

2

)

t−
1−s
2

−1 dt

=

∫ 1

0

(√
tϑ(t) −

√
t

2
+

√
t − 1

2

)

t−
(1−s)

2
−1 dt

=

∫ 1

0

(
ϑ(t) − 1

2

)

t
s
2
−1 dt +

∫ 1

0

t
s
2
−1

2
dt −

∫ 1

0

t
s−1
2

−1

2
dt

=

∫ 1

0

(
ϑ(t) − 1

2

)

t
s
2
−1 dt +

(
t

s
2

s

) ∣∣
∣
∣

1

0

−

(
t

s−1
2

s − 1

) ∣
∣
∣
∣

1

0

=

∫ 1

0

(
ϑ(t) − 1

2

)

t
s
2
−1 dt +

1

s
+

1

1 − s

So if s ∈ Ω, then

ξ(s) =

∫ ∞

0

(
ϑ(t) − 1

2

)

t
s
2
−1 dt =

∫ ∞

0

(
∞∑

n=1

e−πn2t

)

t
s
2 dt

claim
====

∞∑

n=1

∫ ∞

0

e−πn2tt
s
2
−1 dt = π− s

2

∞∑

n=1

1

ns

∫ ∞

0

e−xx
s
2
−1 dx

= π− s
2 ∙ Γ

(s

2

)
ζ(s).

Thus, ξ is essentially the ζ function, along with some “front matter” π− s
2 ∙ Γ

(
s
2

)
.

Exercise. Verify the “claim” in the above computation.

Definition. Define Z : C \ {0, 1} → C by

Z(s) :=
π

s
2

Γ
(

s
2

) ∙ ξ(s).

This is well-defined since 1
Γ is entire.

This function Z is holomorphic on its domain, and furthermore, the above computation
shows that Z

∣
∣
Ω

= ζ. So Z is the analytic continuation of ζ to C \ {0, 1}. We can also see
that the symmetry ξ(1 − s) = ξ(s) shows us how to compute Z(s) for <(s) < 0:

Z(s) =
π

s
2

Γ
(

s
2

) ∙ ξ(s) =
π

s
2

Γ
(

s
2

) ∙ ξ(1 − s) =
π

s
2

Γ
(

s
2

) ∙
Γ
(

1−s
2

)

π
1−s
2

∙ Z(1 − s)

claim
====

(2π)s

π
sin
(πs

2

)
Γ(1 − s) ∙ ζ (1 − s)

And therefore, the following equation holds:

Z(s) =
(2π)s

π
sin
(πs

2

)
Γ(1 − s) ∙ ζ(1 − s). (1)

This is called Riemann’s functional equation.
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Exercise. Verify the “claim” in the above computation.

Now we will note that the singularity of Z at s = 0 is removable, by the following quick
computation:

lim
s→0

Z(s) = lim
s→0

π
s
2

Γ
(

s
2

)
∙ s

2

=
ξ(s) ∙ s

2
= −

1

2
.

So at s = 0, we can define Z(0) := lims→0 Z(s) = −1
2
. So by Riemann’s Removable

Singularity Theorem, Z ′(0) also exists, and Z is well-defined and holomorphic on all of
Ω′ = C \ {1}.

Furthermore, the singularity of Z at s = 1 is a simple pole, and we can compute its
residue:

lim
s→1

(s − 1)Z(s) = lim
s→1

(
π

s
2

Γ
(

s
2

) ∙ (s − 1) ξ(s)

)

= 1,

so Z has a simple pole of residue 1 at s = 1. In summary, Z : C \ {1} → C is the unique
function such that the following conditions hold:

1. Z(s) =
∑∞

n=1
1
ns whenever <(s) > 1;

2. Z is holomorphic on its domain;

3. The domain of Z cannot be made any bigger.

So Z will be the “true” ζ function, and we will write ζ to denote this function instead.

ζ(s) =






∏
p prime

1
1−p−s <(s) > 1

π
s
2

Γ( s
2)

∙ ξ(s) 0 ≤ <(s) ≤ 1, s 6= 0, 1

−1
2

s = 0
(2π)s

π
sin
(

πs
2

)
Γ(1 − s) ∙

∏
p prime

1
1−ps−1 <(s) < 0

If k = 2m with m ∈ N, then

ζ(1 − k) =
(2π)1−k

π
∙ sin

(
π(1 − k)

2

)

Γ(k)ζ(k)

=
2

(2π)m ∙ (−1)m (2m − 1)! ∙
(2π)m

2(2m)!
(−1)m+1 B2m

=
−B2m

2m
= −

Bk

k

If k = 2m + 1 with m ∈ N, then

ζ(1 − k) =
(π)1−k

π
sin

(
π(1 − k)

2

)

Γ(k)ζ(k) = 0

So ζ has a “trivial zero” at −2,−4,−6,−8, . . .
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Corollary. ζ (1 − k) = −Bk
k for all integers k > 1. �

Therefore, for any fixed prime number p, the function ζp ∈ H(C \ {1}) defined by

ζp(s) :=
(
1 − p−s

)
ζ(s)

satisfies the following properties:

i. ζp(s) =
∏

q 6=p
1

1−q−s for <(s) > 1, and

ii. ζp(1 − k) = −
(
1 − pk−1

)
∙ Bk

k
for all integers k > 1.
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