MATH8510
 Lecture 14 Notes

Charlie Conneen

September 23, 2022

Riemann's Functional Equation

Definition. Let $\Omega=\{s \in \mathbb{C} \mid \Re(s)>1\}$, and define $\zeta: \Omega \rightarrow \mathbb{C}$ by

$$
\zeta(s):=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

Our current goal is to find the analytic continuation of ζ to the largest possible $\Omega^{\prime} \supseteq \Omega$, and give a formula for the analytic continuation when $s \in \Omega^{\prime} \backslash \Omega$. We will start this process by defining an auxiliary function

$$
f(s):=\int_{1}^{\infty}\left(\frac{\vartheta(t)-1}{2}\right) t^{\frac{s}{2}-1} \mathrm{~d} t
$$

Note that $f(s)$ is defined for all $s \in \mathbb{C}$:

1. If $\Re(s) \leq 2$, then $\left|t^{\frac{s}{2}}\right| \leq 1$ for all $t \in[0, \infty)$.
2. If $\Re(s)>2$, then $\left|t^{\frac{s}{2}-1}\right|$ increases with t, but not fast enough to prevent convergence, as $\frac{\vartheta(t)-1}{2}$ decays so rapidly.

Exercise. Show that f is entire.
Definition. We define $\xi: \mathbb{C} \backslash\{0,1\} \rightarrow \mathbb{C}$ by

$$
\xi(s):=f(s)+f(1-s)-\left(\frac{1}{s}-\frac{1}{1-s}\right) .
$$

By properties of f, we can see immediately that the following conditions hold:

1. $\xi \in H(\mathbb{C} \backslash\{0,1\})$;
2. $\xi(1-s)=\xi(s)$ for all $s \in \mathbb{C} \backslash\{0,1\}$;
3. $\lim _{s \rightarrow 1}(s-1) \cdot \xi(s)=1$, and $\lim _{s \rightarrow 0} s \cdot \xi(s)=1$.

But what really is ξ ? Well,

$$
\begin{aligned}
f(1-s) & =\int_{1}^{\infty}\left(\frac{\vartheta(u)-1}{2}\right) e^{\frac{1-s}{2}-1} \mathrm{~d} u=\int_{0}^{1}\left(\frac{\vartheta\left(\frac{1}{t}\right)-1}{2}\right) t^{-\frac{1-s}{2}-1} \mathrm{~d} t \\
& =\int_{0}^{1}\left(\frac{\sqrt{t} \vartheta(t)-\sqrt{t}}{2}+\frac{\sqrt{t}-1}{2}\right) t^{-\frac{(1-s)}{2}-1} \mathrm{~d} t \\
& =\int_{0}^{1}\left(\frac{\vartheta(t)-1}{2}\right) t^{\frac{s}{2}-1} \mathrm{~d} t+\int_{0}^{1} \frac{t^{\frac{s}{2}-1}}{2} \mathrm{~d} t-\int_{0}^{1} \frac{t^{\frac{s-1}{2}-1}}{2} \mathrm{~d} t \\
& =\int_{0}^{1}\left(\frac{\vartheta(t)-1}{2}\right) t^{\frac{s}{2}-1} \mathrm{~d} t+\left.\left(\frac{t^{\frac{s}{2}}}{s}\right)\right|_{0} ^{1}-\left.\left(\frac{t^{\frac{s-1}{2}}}{s-1}\right)\right|_{0} ^{1} \\
& =\int_{0}^{1}\left(\frac{\vartheta(t)-1}{2}\right) t^{\frac{s}{2}-1} \mathrm{~d} t+\frac{1}{s}+\frac{1}{1-s}
\end{aligned}
$$

So if $s \in \Omega$, then

$$
\begin{aligned}
\xi(s) & =\int_{0}^{\infty}\left(\frac{\vartheta(t)-1}{2}\right) t^{\frac{s}{2}-1} \mathrm{~d} t=\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} e^{-\pi n^{2} t}\right) t^{\frac{s}{2}} \mathrm{~d} t \\
& \xlongequal{\text { claim }} \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\pi n^{2} t} t^{\frac{s}{2}-1} \mathrm{~d} t=\pi^{-\frac{s}{2}} \sum_{n=1}^{\infty} \frac{1}{n^{s}} \int_{0}^{\infty} e^{-x} x^{\frac{s}{2}-1} \mathrm{~d} x \\
& =\pi^{-\frac{s}{2}} \cdot \Gamma\left(\frac{s}{2}\right) \zeta(s) .
\end{aligned}
$$

Thus, ξ is essentially the ζ function, along with some "front matter" $\pi^{-\frac{s}{2}} \cdot \Gamma\left(\frac{s}{2}\right)$.
Exercise. Verify the "claim" in the above computation.
Definition. Define $\mathcal{Z}: \mathbb{C} \backslash\{0,1\} \rightarrow \mathbb{C}$ by

$$
\mathcal{Z}(s):=\frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right)} \cdot \xi(s)
$$

This is well-defined since $\frac{1}{\Gamma}$ is entire.
This function \mathcal{Z} is holomorphic on its domain, and furthermore, the above computation shows that $\left.\mathcal{Z}\right|_{\Omega}=\zeta$. So \mathcal{Z} is the analytic continuation of ζ to $\mathbb{C} \backslash\{0,1\}$. We can also see that the symmetry $\xi(1-s)=\xi(s)$ shows us how to compute $\mathcal{Z}(s)$ for $\Re(s)<0$:

$$
\begin{aligned}
\mathcal{Z}(s) & =\frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right)} \cdot \xi(s)=\frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right)} \cdot \xi(1-s)=\frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right)} \cdot \frac{\Gamma\left(\frac{1-s}{2}\right)}{\pi^{\frac{1-s}{2}}} \cdot \mathcal{Z}(1-s) \\
& \xlongequal{\text { claim }} \frac{(2 \pi)^{s}}{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \cdot \zeta(1-s)
\end{aligned}
$$

And therefore, the following equation holds:

$$
\begin{equation*}
\mathcal{Z}(s)=\frac{(2 \pi)^{s}}{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \cdot \zeta(1-s) . \tag{1}
\end{equation*}
$$

This is called Riemann's functional equation.

Exercise. Verify the "claim" in the above computation.
Now we will note that the singularity of \mathcal{Z} at $s=0$ is removable, by the following quick computation:

$$
\lim _{s \rightarrow 0} \mathcal{Z}(s)=\lim _{s \rightarrow 0} \frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right) \cdot \frac{s}{2}}=\frac{\xi(s) \cdot s}{2}=-\frac{1}{2}
$$

So at $s=0$, we can define $\mathcal{Z}(0):=\lim _{s \rightarrow 0} \mathcal{Z}(s)=-\frac{1}{2}$. So by Riemann's Removable Singularity Theorem, $\mathcal{Z}^{\prime}(0)$ also exists, and \mathcal{Z} is well-defined and holomorphic on all of $\Omega^{\prime}=\mathbb{C} \backslash\{1\}$.

Furthermore, the singularity of \mathcal{Z} at $s=1$ is a simple pole, and we can compute its residue:

$$
\lim _{s \rightarrow 1}(s-1) \mathcal{Z}(s)=\lim _{s \rightarrow 1}\left(\frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right)} \cdot(s-1) \xi(s)\right)=1
$$

so \mathcal{Z} has a simple pole of residue 1 at $s=1$. In summary, $\mathcal{Z}: \mathbb{C} \backslash\{1\} \rightarrow \mathbb{C}$ is the unique function such that the following conditions hold:

1. $\mathcal{Z}(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ whenever $\Re(s)>1$;
2. \mathcal{Z} is holomorphic on its domain;
3. The domain of \mathcal{Z} cannot be made any bigger.

So \mathcal{Z} will be the "true" ζ function, and we will write ζ to denote this function instead.

$$
\zeta(s)= \begin{cases}\prod_{p \text { prime }} \frac{1}{1-p^{-s}} & \Re(s)>1 \\ \frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s}{2}\right)} \cdot \xi(s) & 0 \leq \Re(s) \leq 1, s \neq 0,1 \\ -\frac{1}{2} & s=0 \\ \frac{(2 \pi)^{s}}{\pi} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \cdot \prod_{p \text { prime }} \frac{1}{1-p^{s-1}} & \Re(s)<0\end{cases}
$$

If $k=2 m$ with $m \in \mathbb{N}$, then

$$
\begin{aligned}
\zeta(1-k) & =\frac{(2 \pi)^{1-k}}{\pi} \cdot \sin \left(\frac{\pi(1-k)}{2}\right) \Gamma(k) \zeta(k) \\
& =\frac{2}{(2 \pi)^{m}} \cdot(-1)^{m}(2 m-1)!\cdot \frac{(2 \pi)^{m}}{2(2 m)!}(-1)^{m+1} B_{2 m} \\
& =\frac{-B_{2 m}}{2 m}=-\frac{B_{k}}{k}
\end{aligned}
$$

If $k=2 m+1$ with $m \in \mathbb{N}$, then

$$
\zeta(1-k)=\frac{(\pi)^{1-k}}{\pi} \sin \left(\frac{\pi(1-k)}{2}\right) \Gamma(k) \zeta(k)=0
$$

So ζ has a "trivial zero" at $-2,-4,-6,-8, \ldots$

Corollary. $\zeta(1-k)=-\frac{B_{k}}{k}$ for all integers $k>1$.
Therefore, for any fixed prime number p, the function $\zeta_{p} \in H(\mathbb{C} \backslash\{1\})$ defined by

$$
\zeta_{p}(s):=\left(1-p^{-s}\right) \zeta(s)
$$

satisfies the following properties:
i. $\zeta_{p}(s)=\prod_{q \neq p} \frac{1}{1-q^{-s}}$ for $\Re(s)>1$, and
ii. $\zeta_{p}(1-k)=-\left(1-p^{k-1}\right) \cdot \frac{B_{k}}{k}$ for all integers $k>1$.

