MATHS8510
Lecture 14 Notes

Charlie Conneen

September 23, 2022

Riemann’s Functional Equation

Definition. Let Q = {s € C| R(s) > 1}, and define ¢: Q@ — C by

Our current goal is to find the analytic continuation of ( to the largest possible ' D €,
and give a formula for the analytic continuation when s € Q' \ Q. We will start this process
by defining an auxiliary function

f(s) = /Ioo (%) t27tdt.

Note that f(s) is defined for all s € C:
1. If R(s) < 2, then [t2| < 1 for all ¢ € [0,00).

2. If R(s) > 2, then ‘t%_1| increases with ¢, but not fast enough to prevent convergence,

as % decays so rapidly.

Exercise. Show that f is entire.

Definition. We define ¢: C\ {0,1} — C by

€6 = 1)+ -9 - (5 - 1)

s 1-—s
By properties of f, we can see immediately that the following conditions hold:
1. £€ H(C\ {0,1});
2. £(1—s)=¢(s) for all s € C\ {0, 1};
3. limgy (s —1)-&(s) =1, and lims_¢ s - &(s) = 1.



But what really is £7 Well,
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So if s € €2, then
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Thus, ¢ is essentially the ¢ function, along with some “front matter” == - T’ (g)
Exercise. Verify the “claim” in the above computation.

Definition. Define Z:C\ {0,1} — C by

This is well-defined since % is entire.

This function Z is holomorphic on its domain, and furthermore, the above computation
shows that Z|Q = (. So Z is the analytic continuation of ¢ to C\ {0,1}. We can also see
that the symmetry £(1 — s) = £(s) shows us how to compute Z(s) for £(s) < 0

2() = ey 60) = g €0 =) = P 22—
en)

And therefore, the following equation holds:

Z(s) = @ sin (%S> T(1—s) C(1—s). (1)

This is called Riemann’s functional equation.
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Exercise. Verify the “claim” in the above computation.

Now we will note that the singularity of Z at s = 0 is removable, by the following quick
computation:

2 1
lim Z(s) = lim i _Hs)s
s—0 s—0 (%) .S 2 2
So at s = 0, we can define Z(0) := lim,_oZ(s) = —3. So by Riemann’s Removable

Singularity Theorem, Z’(0) also exists, and Z is well-defined and holomorphic on all of
O =C\{1}.

Furthermore, the singularity of Z at s = 1 is a simple pole, and we can compute its
residue:

. . i
lim (s —1)Z(s) = lim (@ (s — 1)5(5)> =1,
so Z has a simple pole of residue 1 at s = 1. In summary, Z : C\ {1} — C is the unique
function such that the following conditions hold:
1. Z(s) = >, = whenever R(s) > 1;

2. Z is holomorphic on its domain;
3. The domain of Z cannot be made any bigger.

So Z will be the “true” ¢ function, and we will write ¢ to denote this function instead.
1
ngrime 1——19*S éR(S) > 1

-€(s) 0<R(s)<1,5s#0,1
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If £k =2m with m € N, then

C(1—Fk) = Cm) " g <M) T(k)C (k)

s 2
2 m 2m " m—+1
_B2m Bk
B 2m - ok

If K =2m + 1 with m € N, then

1—k
1—
-k =" (”( k)) T'(k)C(k) =0
So ¢ has a “trivial zero” at —2, -4, —6, -8, ...
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Corollary. ((1—k) = —% for all integers k > 1.
Therefore, for any fixed prime number p, the function ¢, € H(C\ {1}) defined by
G(s) = (1=p") C(s)
satisfies the following properties:

i. ¢(s) =1T],., —= for R(s) > 1, and

q#p 1—q=°

i (1 —k)=— (1 — pkil) . % for all integers k£ > 1.



