MATH8510 Lecture 15 Notes

Charlie Conneen

September 26, 2022

p-adic Interpolation

Fix a prime p and $b \in \mathbb{N}$. Define $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ by $f(s) = b^s$. Is it possible to extend f to \mathbb{Z}_p in a *nice* way? Since $\mathbb{Z}_{\geq 0}$ is dense in \mathbb{Z}_p , the extension ought to be continuous. But we need to ensure $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ is continuous with respect to the p-adic topology.

Case 1: if $p \mid b$, then $|b|_p < 1$ and $|f(s) - 1|_p = 1$, for all s > 0, by the strong triangle equality. Thus $\forall s_0 \in \mathbb{Z}_{\geq 0}$, we know that

$$|f(s) - f(s_0)|_p = |f(s_0)|_p \cdot |f(s - s_0) - 1|_p = |f(s_0)|_p > 0$$

for all $s > s_0$. So in this case, f fails to be continuous at any $s_0 \in \mathbb{Z}_{\geq 0}$.

Case 2: If $b \equiv 1 \pmod{p}$, then b = 1 + kp for some $k \ge 0$. Thus for any $s_1 > s_2$ in $\mathbb{Z}_{\ge 0}$, we have

$$|f(s_1) - f(s_2)|_p = |b|_p^{s_2} \cdot |b^{s_1 - s_2} - 1|_p = \left|\sum_{j=1}^{s_1 - s_2} {s_1 - s_2 \choose j} (kp)^j\right| \le |s_1 - s_2|_p$$

So f is uniformly continuous on $\mathbb{Z}_{\geq 0}$, so it extends to a continuous function $f: \mathbb{Z}_p \to \mathbb{Z}_p$, defined by

$$f(x) \coloneqq \lim_{n \to \infty} f(s_n)$$

where $(s_n)_n$ is any sequence in $(\mathbb{Z}_{\geq 0}, |\cdot|_p)$ converging to x.

Case 3: If $b \neq 0, 1 \pmod{p}$, we again have a problem: the sequence $(s_n)_n = (p^n)_n$ converges to 0 in $(\mathbb{Z}_{\geq 0}, |\cdot|_n)$, but

$$f(s_n) = b^{s_n} = b^{p^n} \equiv b^{p^{n-1}} \equiv b^{p^{n-2}} \equiv \dots \equiv b \not\equiv 1 \pmod{p}$$

This means $|f(s_n) - 1|_p = 1$ for all n, so $(f(s_n))_n \not\rightarrow 1$. Hence, f fails to be continuous at 0. So what do we do?

We can resolve this issue by fixing $r \in \{0, 1, ..., p-2\}$ and restricting to the domain $S_r := \{r + (p-1)m \mid m \in \mathbb{Z}_{\geq 0}\}$. Indeed, if $s \in S_r$, we have that

$$f(s) = b^r \left(b^{p-1}\right)^m$$

and $m \mapsto (b^{p-1})^m$ extends to \mathbb{Z}_p by Case 1, because $b^{p-1} \equiv 1 \pmod{p}$. Thus, each of the p-1 different restrictions $f: S_0 \to \mathbb{Z}_{\geq 0}, f: S_1 \to \mathbb{Z}_{\geq 0}, \ldots, f: S_{p-2} \to \mathbb{Z}_{\geq 0}$ extends to a continuous function $f: \mathbb{Z}_p \to \mathbb{Z}_p$, because each S_n is still dense in \mathbb{Z}_p .

We will see something similar to Case 3 when we try to interpolate $k \mapsto \zeta_p(1-k) = -(1-p^{k-1})\frac{B_k}{k}$.

p-adic Distributions

Fix a prime p, and a compact open subset $X \subseteq \mathbb{Q}_p$. Recall that a function $f: X \to \mathbb{Q}_p$ is said to be **locally constant** if $\forall x \in X, \exists U \subseteq X$ open with $x \in U$ such that $f(u) = f(x) \forall u \in U$. Write $LC(X, \mathbb{Q}_p)$ to denote the set of all locally constant functions $f: X \to \mathbb{Q}_p$.

Exercise (Easy). Show that $LC(X, \mathbb{Q}_p)$ is a linear subspace of the \mathbb{Q}_p -vector space of continuous functions $X \to \mathbb{Q}_p$.

Definition. A p-adic distribution on X is a linear map

$$\mu \colon \mathrm{LC}(X, \mathbb{Q}_p) \to \mathbb{Q}_p$$

Mimicking notations from analysis on \mathbb{R} and \mathbb{C} , we write

$$\int_X f \,\mathrm{d}\mu = \int_X f(x) \,\mathrm{d}\mu(x)$$

instead of $\mu(f)$. An important fact from HW2 yields that every $f \in LC(X, \mathbb{Q}_p)$ has the form $f = \sum_{i=1}^{k} \alpha_i \chi_{U_i}$, where each $\alpha_i \in \mathbb{Q}_p$ and χ_{U_i} is the indicator function of $U_i \subseteq \mathbb{Q}_p$, where the collection $\{U_i\}_{i=1}^k$ is a *disjoint* collection of open balls in X. In particular, this means

$$\int_X f \,\mathrm{d}\mu = \sum_{i=1}^k \alpha_i \int_X \chi_{U_i} \,\mathrm{d}\mu$$

so μ is entirely determined by the values

$$\mu(\chi_U) = \int_X \chi_U \,\mathrm{d}\mu$$

for open balls $U \subseteq X$. For this reason, we will often write $\mu(U) = \mu(\chi_U)$ when U is an open ball in X.

Proposition. Let \mathcal{B}_X be the set of open balls contained in X. If $\mu: \mathcal{B}_X \to \mathbb{Q}_p$ is any function satisfying

$$\mu(c + p^{n}\mathbb{Z}_{p}) = \sum_{d=0}^{p-1} \mu\left(c + dp^{n} + p^{n+1}\mathbb{Z}_{p}\right)$$
(1)

for all $c + p^n \mathbb{Z}_p \subseteq X$, then μ extends uniquely to a p-adic distribution on X.

Proof sketch. If $U \subseteq X$ is compact and open, by a HW2 exercise, U is a disjoint union of open balls in X. Then eq. (1) yields additivity of μ over disjoint balls, as well as linearity of μ on $LC(X, \mathbb{Q}_p)$.

We will talk next lecture about the *Haar distribution*, given by

$$\mu_{\text{Haar}}\left(c+p^{n}\mathbb{Z}_{p}\right)=\frac{1}{p^{n}}$$