MATH8510
 Lecture 16 Notes

Charlie Conneen

September 28, 2022

p-adic Distributions (continued)

Recall. A distribution on X is a linear functional $\mu: \operatorname{LC}\left(X, \mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$.
Often the most natural distribution is the Haar distribution, defined by

$$
\mu_{\text {Haar }}\left(c+p^{n} \mathbb{Z}_{p}\right):=\frac{1}{p^{n}}
$$

for all open balls $c+p^{n} \mathbb{Z}_{p}$. The key property that Haar distribution has is translation invariance: $\mu_{\text {Haar }}(a+U)=\mu_{\text {Haar }}(U)$. However, on the p-adic numbers, the problem with the Haar distribution is that as n increases, $c+p^{n} \mathbb{Z}_{p}$ shrinks, but this means that

$$
\left|\mu_{\text {Haar }}\left(c+p^{n} \mathbb{Z}_{p}\right)\right|_{p}=p^{n}
$$

i.e. the Haar distribution sees smaller open balls as "larger" in the p-adic sense. We will formalize this later, and see that the Haar distribution does not give us a p-adic measure.

Another simple example is the point-mass distribution for some $\alpha \in X$, defined by

$$
\mu_{\alpha}(U)= \begin{cases}1 & \alpha \in U \\ 0 & \alpha \notin U\end{cases}
$$

This can be extended to finitely many "point masses" by taking some finite $A=$ $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq X$ and defining $\mu_{A}:=\sum_{i=1}^{n} \mu_{\alpha_{i}}$.

Perhaps the most important distributions we will talk about, at least for the purposes of this course, are the Bernoulli distributions:

$$
\mu_{B_{k}}: \mathrm{LC}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}
$$

For each $k \geq 0$, we define $\mu_{B_{k}}$ on open balls $c+p^{n} \mathbb{Z}_{p} \subseteq \mathbb{Z}_{p}$ by

$$
\mu_{B_{k}}\left(c+p^{n} \mathbb{Z}_{p}\right):=p^{n(k-1)} B_{k}\left(\frac{c}{p^{n}}\right)
$$

where we assume $c \in\{0, \ldots, p-1\}$.
It is natural to wonder why we even bothered to place the $B_{k}\left(\frac{c}{p^{n}}\right)$ term in the measure. The answer to this question will follow from this next Lemma:

Lemma. Let $k \geq 0 . B_{k}(x)$ is the unique degree k monic polynomial satisfying

$$
\begin{equation*}
B_{k}(m t)=m^{k-1} \sum_{d=0}^{m-1} B_{k}\left(t+\frac{d}{m}\right) \tag{1}
\end{equation*}
$$

for all $m \in \mathbb{N}$ and all $t \in \mathbb{C}$.
Proof. If $|z|<2 \pi$ and $x \in \mathbb{C}$, then

$$
\begin{aligned}
\sum_{k=0}^{\infty} B_{k}(x) \cdot \frac{z^{k}}{k!} & =\frac{z e^{z x}}{e^{z}-1}=\left(\sum_{m=0}^{\infty} B_{m} \cdot \frac{z^{m}}{m!}\right)\left(\sum_{\ell=0}^{\infty} x^{\ell} \cdot \frac{z^{\ell}}{\ell!}\right) \\
& =\sum_{k=0}^{\infty}\left(\sum_{\substack{m+\ell=k \\
m, \ell \geq 0}} B_{m} \cdot \frac{z^{m}}{m!} \cdot x^{\ell} \cdot \frac{z^{\ell}}{\ell!}\right) \\
& =\sum_{k=0}^{\infty}\left(\sum_{\ell=0}^{k} B_{k-\ell} \cdot \frac{k!\cdot x^{\ell}}{(k-\ell)!\ell!}\right) \frac{z^{k}}{k!}
\end{aligned}
$$

and therefore:

$$
\begin{aligned}
B_{k}(x)=\sum_{\ell=0}^{k}\binom{k}{\ell} B_{k-\ell} x^{\ell} & =\binom{k}{k} B_{0} x^{k}+\cdots \\
& =x^{k}+\cdots
\end{aligned}
$$

Therefore, $B_{k}(x)$ is monic of degree k. Moreover, if $m \in \mathbb{N}$, then for all $t \in \mathbb{C}$, and all $z \in \mathbb{C}$ with $|z|<\frac{2 \pi}{m}$, we have

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left(m^{k-1} \cdot \sum_{d=0}^{m-1} B_{k}\left(t+\frac{d}{m}\right)\right) \frac{z^{k}}{k!} & =\frac{1}{m} \cdot \sum_{d=0}^{m-1}\left(\sum_{k=0}^{\infty} B_{k}\left(t+\frac{d}{m}\right) \frac{(m z)^{k}}{k!}\right) \\
& =\frac{1}{m} \cdot \sum_{d=0}^{m-1}\left(\frac{(m z) e^{\left(t+\frac{d}{m}\right)(m z)}}{e^{m z}-1}\right) \\
& =\frac{z e^{(m t) z}}{e^{m z}-1} \cdot \sum_{d=0}^{m-1}\left(e^{z}\right)^{d} \\
& =\frac{z e^{(m t) z}}{e^{m z}-1} \cdot \frac{\left(e^{z}\right)^{m}-1}{e^{z}-1} \\
& =\frac{z e^{(m t) z}}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k}(m t) \cdot \frac{z^{k}}{k!}
\end{aligned}
$$

Therefore, $B_{k}(m t)=m^{k-1} \sum_{d=0}^{m-1} B_{k}\left(t+\frac{d}{m}\right)$ for all $m \in \mathbb{N}$ and all $t \in \mathbb{C}$.
Now suppose g is monic of degree k and satisfies eq. (1). Then for any $\ell \in \mathbb{Z}$,

$$
\begin{aligned}
\int_{\ell}^{\ell+1}\left(B_{k}(t)-g(t)\right) \mathrm{d} t & =\lim _{m \rightarrow \infty}\left(\frac{1}{m} \sum_{d=0}^{m-1}\left(B_{k}\left(\ell+\frac{d}{m}\right)-g\left(\ell+\frac{d}{m}\right)\right)\right) \\
& =\lim _{m \rightarrow \infty} \frac{B_{k}(m \ell)-g(m \ell)}{m^{k}}=0,
\end{aligned}
$$

so on every interval $[\ell, \ell+1]$, the intermediate value theorem yields that $B_{k}(t)=g(t)$ for some $t \in[\ell, \ell+1]$. So the polynomial $B_{k}-g$ has infinitely many zeroes on \mathbb{R}, and is therefore the zero polynomial. This argument shows uniqueness of B_{k} as a polynomial satisfying eq. (1).

Now suppose $c+p^{n} \mathbb{Z}_{p} \subseteq \mathbb{Z}_{p}$ with $c \in\{0, \ldots, p-1\}$, and $k \geq 0$. Then

$$
\begin{aligned}
\mu_{B_{k}}\left(c+p^{n} \mathbb{Z}_{p}\right) & =p^{n(k-1)} B_{k}\left(\frac{c}{p^{n}}\right)=p^{n(k-1)} B_{k}\left(p \cdot \frac{c}{p^{n+1}}\right) \\
& =p^{n(k-1)}\left(p^{k-1} \sum_{d=0}^{p-1} B_{k}\left(\frac{c}{p^{n+1}+\frac{d}{p}}\right)\right) \\
& =\sum_{d=0}^{p-1} p^{(n+1)(k-1)} B_{k}\left(\frac{c+d p^{n}}{p^{n+1}}\right) \\
& =\sum_{d=0}^{p-1} \mu_{B_{k}}\left(\left(c+d p^{n}\right)+p^{n+1} \mathbb{Z}_{p}\right)
\end{aligned}
$$

By the Proposition from the previous lecture, since $\mu_{B_{k}}$ extends uniquely to a distribution

$$
\mu_{B_{k}}: \mathrm{LC}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p} .
$$

Now, the Bernoulli distributions still have the same issue as the Haar measure, in that smaller balls are measured to be "larger" in the p-adic sense. However, the Bernoulli distributions will be salvageable, as we will be able to normalize them. We will continue our discussion on Bernoulli distributions next lecture.

