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Fixing the Bernoulli Distributions

Recall. The Bernoulli Distributions are defined by

μBk
: LC(Zp,Qp) → Qp

c + pnZp 7→ pn(k−1)Bk

(
c

pn

)

where c ∈ {0, . . . , p − 1} and k ≥ 0.

The problem with these distributions μBk
, much the same as the problem with the Haar

distribution, is that |μBk
(U)|p grows larger as U gets smaller; indeed,

μB0(c + pnZp) = 1

μB1(c + pnZp) =
c

pn
−

1

2

μB2(c + pnZp) =
c2

pn
− c +

1

pn

and so on. These get larger in the p-adic sense as n gets larger, i.e. as the ball gets smaller.

Definition. A p-adic distribution μ : LC(X,Qp) is called a p-adic measure if there exists an
M ≥ 0 such that, for all U ⊆ X compact open,

|μ(U)|p ≤ M.

So we can quantify the issue with the Bernoulli distributions in this language, by saying
that μBk

is not a p-adic measure. However, there are some steps we can take to “regularize”
these distributions, and will do so in a way which doesn’t work for the Haar distribution,
thus more robustly motivating the study of these perhaps initially strange distributions.

Remark. We take a moment to say a few things about distributions in general.

1. The set of distributions LC(X,Qp) → Qp forms a Qp-vector space, as the dual space of the Qp-
vector space LC(X,Qp). As such, we will denote by the space of distributions (LC(X,Qp))

∗.
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2. The set of measures μ ∈ (LC(X,Qp))∗ forms a linear subspace of (LC(X,Qp))∗.

3. If μ is a distribution (measure) on Zp, and α ∈ Z×
p , then μ′ ∈ (LC(X,Qp))∗ defined by

μ′(U) := μ(αU)

is also a distribution (measure).

Definition. Let k ≥ 0 be an integer, and let α ∈ Z \ pZ with α 6= 1. We define the regularized
Bernoulli Distribution as such:

μk,α : LC(Zp,Qp) → Qp

μk,α(U) = μBk
(U) − α−kμBk

(αU)

Our task now is to show that for each k > 0, there exists some Mk ≥ 0 such that

|μk,α(c + pnZp)|p ≤ Mk

for all n ≥ 0, and c ∈ {0, . . . , p − 1}.
Last time, we saw that the kth Bernoulli polynomial has the following expression:

Bk(X) =
k∑

`=0

(
k

`

)

Bk−`X
` = Xk −

k

2
Xk−1 + ∙ ∙ ∙ + kBk−1X + Bk

Bernoulli numbers are rational, so there exists a least Dk ∈ N such that DkBk(X) ∈ Z[X].

Theorem. Given k > 0 and α ∈ Z \ pZ with α 6= 1, the following are true:

1.
∣
∣μk,α(c + pnZp) − kck−1μ1,α(c + pnZp)

∣
∣
p
≤
∣
∣
∣ 1
Dk

∣
∣
∣
p
∙ p−n;

2. |μk,α(c + pnZp)|p ≤
∣
∣
∣ 1
Dk

∣
∣
∣
p

for all n ≥ 0 and c ∈ {0, . . . , p − 1}.

Proof. Fix n ≥ 0, c ∈ {0, . . . , p − 1}, and note that |α|p = 1. So if {q} denotes the fractional
part of a rational number, then:

α(c + pnZp) = pn

(
αc

pn
+ αZp

)

= pn

({
αc

pn

}

+

⌊
αc

pn

⌋

+ Zp

)

= pn

({
αc

pn

}

+ Zp

)

= pn

{
αc

pn

}

+ pnZp

So cα = pn
{

αc
pn

}
is the unique representative in {0, . . . , pn − 1} such that

α(c + pnZp) = cα + pnZp.
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Therefore:

Dkμk,α(c + pnZp) = Dk

(
μBk

(c + pnZp) − α−kμBk
(α(c + pnZp))

)

= Dk

(

pn(k−1)Bk

(
c

pn

)

− α−kpn(k−1)Bk

(
cα

pn

))

= Dk ∙
k∑

`=0

(
k

`

)

B`

(

pn(k−1)

(
c

pn

)k−`

− α−kpn(k−1)

(
cα

pn

)k−`
)

=
k∑

`=0

(
k

`

)

DkB`

(

ck−` − α−`
(cα

α

)k−`
)

pn(`−1) (†)

But observe now that

cα

α
=

pn

α

{
αc

pn

}

=
pn

α

(
αc

pn
−

⌊
αc

pn

⌋)

= c −
pn

α

⌊
αc

pn

⌋

So the `th summand of eq. (†) above is given by the following, when ` = 0:

Dk ∙

(

ck −

(

c −
pn

α

⌊
αc

pn

⌋)k
)

p−n = Dk

(

ck −
k∑

j=0

(
k

j

)(

−
pn

α

⌊
αc

pn

⌋)j

ck−j

)

pn

= Dk

(

kck−1 ∙
pn

α

⌊
αc

pn

⌋

+ z0p
2n

)

p−n

= Dkkck−1 ∙
1

α

⌊
αc

pn

⌋

+ Dkz0p
n,

where z0 ∈ Zp is a parameter which we will not need to keep track of. If ` = 1, then we have

k ∙ Dk ∙ −
1

2
∙
(
ck−1 − α−1

(
ck−1 + z1p

n
))

= Dkkck−1 ∙

(
α−1 − 1

2

)

+ Dk
α−1k

2
z1p

n

And finally, if ` > 1, then the term is divisible by pn, so we obtain:

Dkμk,α(c + pnZp) ≡
1∑

`=0

(
k

`

)

DkB`

(

ck−1 − α−`
(cα

α

)k−`
)

pn(`−1) (mod pnZp)

≡ Dkkck−1

(
1

α

⌊
αc

pn

⌋

+
α−1 − 1

2

)

(mod pnZp)

= Dkkck−1μ1,α(c + pnZp).

This proves part (1) of the theorem. We will finish the proof of the theorem in the next
lecture. �
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