MATH8510
 Lecture 17 Notes

Charlie Conneen

September 30, 2022

Fixing the Bernoulli Distributions

Recall. The Bernoulli Distributions are defined by

$$
\begin{aligned}
\mu_{B_{k}}: \operatorname{LC}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) & \rightarrow \mathbb{Q}_{p} \\
c+p^{n} \mathbb{Z}_{p} & \mapsto p^{n(k-1)} B_{k}\left(\frac{c}{p^{n}}\right)
\end{aligned}
$$

where $c \in\{0, \ldots, p-1\}$ and $k \geq 0$.
The problem with these distributions $\mu_{B_{k}}$, much the same as the problem with the Haar distribution, is that $\left|\mu_{B_{k}}(U)\right|_{p}$ grows larger as U gets smaller; indeed,

$$
\begin{aligned}
& \mu_{B_{0}}\left(c+p^{n} \mathbb{Z}_{p}\right)=1 \\
& \mu_{B_{1}}\left(c+p^{n} \mathbb{Z}_{p}\right)=\frac{c}{p^{n}}-\frac{1}{2} \\
& \mu_{B_{2}}\left(c+p^{n} \mathbb{Z}_{p}\right)=\frac{c^{2}}{p^{n}}-c+\frac{1}{p^{n}}
\end{aligned}
$$

and so on. These get larger in the p-adic sense as n gets larger, i.e. as the ball gets smaller.
Definition. A p-adic distribution $\mu: \operatorname{LC}\left(X, \mathbb{Q}_{p}\right)$ is called a p-adic measure if there exists an $M \geq 0$ such that, for all $U \subseteq X$ compact open,

$$
|\mu(U)|_{p} \leq M .
$$

So we can quantify the issue with the Bernoulli distributions in this language, by saying that $\mu_{B_{k}}$ is not a p-adic measure. However, there are some steps we can take to "regularize" these distributions, and will do so in a way which doesn't work for the Haar distribution, thus more robustly motivating the study of these perhaps initially strange distributions.

Remark. We take a moment to say a few things about distributions in general.

1. The set of distributions $\operatorname{LC}\left(X, \mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$ forms a $\mathbb{Q}_{p^{-}}$-vector space, as the dual space of the $\mathbb{Q}_{p^{-}}$ vector space $\operatorname{LC}\left(X, \mathbb{Q}_{p}\right)$. As such, we will denote by the space of distributions $\left(\operatorname{LC}\left(X, \mathbb{Q}_{p}\right)\right)^{*}$.
2. The set of measures $\mu \in\left(\operatorname{LC}\left(X, \mathbb{Q}_{p}\right)\right)^{*}$ forms a linear subspace of $\left(\mathrm{LC}\left(X, \mathbb{Q}_{p}\right)\right)^{*}$.
3. If μ is a distribution (measure) on \mathbb{Z}_{p}, and $\alpha \in \mathbb{Z}_{p}^{\times}$, then $\mu^{\prime} \in\left(\operatorname{LC}\left(X, \mathbb{Q}_{p}\right)\right)^{*}$ defined by

$$
\mu^{\prime}(U):=\mu(\alpha U)
$$

is also a distribution (measure).
Definition. Let $k \geq 0$ be an integer, and let $\alpha \in \mathbb{Z} \backslash p \mathbb{Z}$ with $\alpha \neq 1$. We define the regularized Bernoulli Distribution as such:

$$
\begin{gathered}
\mu_{k, \alpha}: \operatorname{LC}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p} \\
\mu_{k, \alpha}(U)=\mu_{B_{k}}(U)-\alpha^{-k} \mu_{B_{k}}(\alpha U)
\end{gathered}
$$

Our task now is to show that for each $k>0$, there exists some $M_{k} \geq 0$ such that

$$
\left|\mu_{k, \alpha}\left(c+p^{n} \mathbb{Z}_{p}\right)\right|_{p} \leq M_{k}
$$

for all $n \geq 0$, and $c \in\{0, \ldots, p-1\}$.
Last time, we saw that the $k^{\text {th }}$ Bernoulli polynomial has the following expression:

$$
B_{k}(X)=\sum_{\ell=0}^{k}\binom{k}{\ell} B_{k-\ell} X^{\ell}=X^{k}-\frac{k}{2} X^{k-1}+\cdots+k B_{k-1} X+B_{k}
$$

Bernoulli numbers are rational, so there exists a least $D_{k} \in \mathbb{N}$ such that $D_{k} B_{k}(X) \in \mathbb{Z}[X]$.
Theorem. Given $k>0$ and $\alpha \in \mathbb{Z} \backslash p \mathbb{Z}$ with $\alpha \neq 1$, the following are true:

1. $\left|\mu_{k, \alpha}\left(c+p^{n} \mathbb{Z}_{p}\right)-k c^{k-1} \mu_{1, \alpha}\left(c+p^{n} \mathbb{Z}_{p}\right)\right|_{p} \leq\left|\frac{1}{D_{k}}\right|_{p} \cdot p^{-n} ;$
2. $\left|\mu_{k, \alpha}\left(c+p^{n} \mathbb{Z}_{p}\right)\right|_{p} \leq\left|\frac{1}{D_{k}}\right|_{p}$
for all $n \geq 0$ and $c \in\{0, \ldots, p-1\}$.
Proof. Fix $n \geq 0, c \in\{0, \ldots, p-1\}$, and note that $|\alpha|_{p}=1$. So if $\{q\}$ denotes the fractional part of a rational number, then:

$$
\begin{aligned}
\alpha\left(c+p^{n} \mathbb{Z}_{p}\right) & =p^{n}\left(\frac{\alpha c}{p^{n}}+\alpha \mathbb{Z}_{p}\right)=p^{n}\left(\left\{\frac{\alpha c}{p^{n}}\right\}+\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor+\mathbb{Z}_{p}\right) \\
& =p^{n}\left(\left\{\frac{\alpha c}{p^{n}}\right\}+\mathbb{Z}_{p}\right)=p^{n}\left\{\frac{\alpha c}{p^{n}}\right\}+p^{n} \mathbb{Z}_{p}
\end{aligned}
$$

So $c_{\alpha}=p^{n}\left\{\frac{\alpha c}{p^{n}}\right\}$ is the unique representative in $\left\{0, \ldots, p^{n}-1\right\}$ such that

$$
\alpha\left(c+p^{n} \mathbb{Z}_{p}\right)=c_{\alpha}+p^{n} \mathbb{Z}_{p} .
$$

Therefore:

$$
\begin{align*}
D_{k} \mu_{k, \alpha}\left(c+p^{n} \mathbb{Z}_{p}\right) & =D_{k}\left(\mu_{B_{k}}\left(c+p^{n} \mathbb{Z}_{p}\right)-\alpha^{-k} \mu_{B_{k}}\left(\alpha\left(c+p^{n} \mathbb{Z}_{p}\right)\right)\right) \\
& =D_{k}\left(p^{n(k-1)} B_{k}\left(\frac{c}{p^{n}}\right)-\alpha^{-k} p^{n(k-1)} B_{k}\left(\frac{c_{\alpha}}{p^{n}}\right)\right) \\
& =D_{k} \cdot \sum_{\ell=0}^{k}\binom{k}{\ell} B_{\ell}\left(p^{n(k-1)}\left(\frac{c}{p^{n}}\right)^{k-\ell}-\alpha^{-k} p^{n(k-1)}\left(\frac{c_{\alpha}}{p^{n}}\right)^{k-\ell}\right) \\
& =\sum_{\ell=0}^{k}\binom{k}{\ell} D_{k} B_{\ell}\left(c^{k-\ell}-\alpha^{-\ell}\left(\frac{c_{\alpha}}{\alpha}\right)^{k-\ell}\right) p^{n(\ell-1)}
\end{align*}
$$

But observe now that

$$
\frac{c_{\alpha}}{\alpha}=\frac{p^{n}}{\alpha}\left\{\frac{\alpha c}{p^{n}}\right\}=\frac{p^{n}}{\alpha}\left(\frac{\alpha c}{p^{n}}-\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor\right)=c-\frac{p^{n}}{\alpha}\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor
$$

So the $\ell^{\text {th }}$ summand of eq. (\dagger) above is given by the following, when $\ell=0$:

$$
\begin{aligned}
D_{k} \cdot\left(c^{k}-\left(c-\frac{p^{n}}{\alpha}\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor\right)^{k}\right) p^{-n} & =D_{k}\left(c^{k}-\sum_{j=0}^{k}\binom{k}{j}\left(-\frac{p^{n}}{\alpha}\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor\right)^{j} c^{k-j}\right) p^{n} \\
& =D_{k}\left(k c^{k-1} \cdot \frac{p^{n}}{\alpha}\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor+z_{0} p^{2 n}\right) p^{-n} \\
& =D_{k} k c^{k-1} \cdot \frac{1}{\alpha}\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor+D_{k} z_{0} p^{n}
\end{aligned}
$$

where $z_{0} \in \mathbb{Z}_{p}$ is a parameter which we will not need to keep track of. If $\ell=1$, then we have

$$
k \cdot D_{k} \cdot-\frac{1}{2} \cdot\left(c^{k-1}-\alpha^{-1}\left(c^{k-1}+z_{1} p^{n}\right)\right)=D_{k} k c^{k-1} \cdot\left(\frac{\alpha^{-1}-1}{2}\right)+D_{k} \frac{\alpha^{-1} k}{2} z_{1} p^{n}
$$

And finally, if $\ell>1$, then the term is divisible by p^{n}, so we obtain:

$$
\begin{aligned}
D_{k} \mu_{k, \alpha}\left(c+p^{n} \mathbb{Z}_{p}\right) & \equiv \sum_{\ell=0}^{1}\binom{k}{\ell} D_{k} B_{\ell}\left(c^{k-1}-\alpha^{-\ell}\left(\frac{c_{\alpha}}{\alpha}\right)^{k-\ell}\right) p^{n(\ell-1)}\left(\bmod p^{n} \mathbb{Z}_{p}\right) \\
& \equiv D_{k} k c^{k-1}\left(\frac{1}{\alpha}\left\lfloor\frac{\alpha c}{p^{n}}\right\rfloor+\frac{\alpha^{-1}-1}{2}\right) \quad\left(\bmod p^{n} \mathbb{Z}_{p}\right) \\
& =D_{k} k c^{k-1} \mu_{1, \alpha}\left(c+p^{n} \mathbb{Z}_{p}\right)
\end{aligned}
$$

This proves part (1) of the theorem. We will finish the proof of the theorem in the next lecture.

