MATH8510
 Lecture 18 Notes

Charlie Conneen

October 5, 2022

Measure and Integration on the p-adics.

Corollary (of the Theorem from last lecture). For each $k, \mu_{k, \alpha}$ is a p-adic measure.
We care about the above Corollary because measures give us Riemann integration: fix a compact open $X \subseteq \mathbb{Q}_{p}$ and a p-adic measure $\mu \in\left(\operatorname{LC}\left(X, \mathbb{Q}_{p}\right)\right)^{*}$. Recall that any $f \in$ $\mathrm{LC}\left(X, \mathbb{Q}_{p}\right)$ can be written in the form

$$
f=\sum_{i=1}^{k} a_{i} \chi_{B_{i}}
$$

where $\left\{B_{1}, \ldots, B_{k}\right\}$ is a disjoint collection of open balls $B_{i} \subseteq X$, and $a_{1}, \ldots, a_{k} \in \mathbb{Q}_{p}$, and that in this case we have

$$
\int_{X} f(x) \mathrm{d} \mu(x)=\int_{X} f \mathrm{~d} \mu=\sum_{i=1}^{k} a_{i} \mu\left(B_{i}\right) .
$$

Definition. Suppose μ is a measure on a compact open $X \subseteq \mathbb{Q}_{p}$. The Riemann integral of a continuous $f: X \rightarrow \mathbb{Q}_{p}$ against μ is defined by

$$
\int_{X} f(x) \mathrm{d} \mu(x):=\lim _{n \rightarrow \infty} S_{n,\left(x_{c, n}\right)}
$$

where the $n^{\text {th }}$ Riemann sum $S_{n,\left(x_{c, n}\right)}$ is defined by

$$
S_{n,\left(x_{c, n}\right)}:=\sum_{c+p^{n} \mathbb{Z}_{p} \subseteq X} f\left(x_{c, n}\right) \mu\left(c+p^{n} \mathbb{Z}_{p}\right)
$$

with sample points $x_{c, n} \in c+p^{n} \mathbb{Z}_{p}$.
Theorem. The integral $\int_{X} f(x) \mathrm{d} \mu(x)=\int_{X} f \mathrm{~d} \mu$ is a well-defined p-adic number, i.e.

$$
\lim _{n \rightarrow \infty} S_{n,\left(x_{c, n}\right)}
$$

exists in \mathbb{Q}_{p} and is independent of our choice of sample points $\left(x_{c, n}\right)$.

Proof. Since μ is a measure, there exists some $M \geq 0$ such that

$$
\left|\mu\left(c+p^{n} \mathbb{Z}_{p}\right)\right|_{p} \leq M
$$

for all $c+p^{n} \mathbb{Z}_{p} \subseteq X$. Since X is compact and open, there exists some $n_{0} \in \mathbb{N}$ such that, for every $n \geq n_{0}$, we may write X as a finite disjoint union of open balls of the form $c+p^{n} \mathbb{Z}_{p}$. Now for each $n \geq n_{0}$ and for each $c+p^{n} \mathbb{Z}_{p}$ appearing in the partition

$$
X=\bigsqcup_{c} c+p^{n} \mathbb{Z}_{p}
$$

pick a sample point $x_{c, n} \in c+p^{n} \mathbb{Z}_{p}$ and define the Riemann sum:

$$
S_{n,\left(x_{c, n}\right)}=\sum_{c+p^{n} \mathbb{Z}_{p} \subseteq X} f\left(x_{c, n}\right) \mu\left(c+p^{n} \mathbb{Z}_{p}\right)
$$

Fix $\varepsilon>0$ and choose $N=N(\varepsilon) \geq n_{0}$ (i.e. N is dependent on the choice of ε) such that

$$
|f(x)-f(y)|_{p}<\frac{\varepsilon}{M+1}
$$

wherever $x, y \in X$ satisfy $|x-y|_{p} \leq p^{-N}$; this holds because f is continuous and X is compact, so f is uniformly continuous on X. Now if N is fixed and $n \geq N$, we have

$$
\begin{aligned}
& \left|S_{n+1,\left(x_{c, n+1}\right)}-S_{n,\left(x_{c, n}\right)}\right|_{p} \\
& =\left|\sum_{c^{\prime}+p^{n+1} \mathbb{Z}_{p} \subseteq X} f\left(x_{c^{\prime}, n+1}\right) \mu\left(c^{\prime}+p^{n+1} \mathbb{Z}_{p}\right)-\sum_{c+p^{n} \mathbb{Z}_{p}} f\left(x_{c, n}\right) \mu\left(c+p^{n} \mathbb{Z}_{p}\right)\right|_{p} \\
& =\left|\sum_{c+p^{n} \mathbb{Z}_{p} \subseteq X}\left(\sum_{\substack{c^{\prime}+p^{n} \mathbb{Z}_{p} \\
\subseteq c+p^{n} \mathbb{Z}_{p}}}\left(f\left(x_{c^{\prime}, n+1}\right) \mu\left(c^{\prime}+p^{n+1} \mathbb{Z}_{p}\right)-f\left(x_{c, n}\right) \mu\left(c^{\prime}+p^{n+1} \mathbb{Z}_{p}\right)\right)\right)\right|_{p} \\
& =\left|\sum_{c+p^{n} \mathbb{Z}_{p} \subseteq X}\left(\sum_{\substack{c^{\prime}+p^{n} \mathbb{Z}_{p} \\
\subseteq c+p^{n} \mathbb{Z}_{p}}}\left(f\left(x_{c^{\prime}, n+1}\right)-f\left(x_{c, n}\right)\right) \mu\left(c^{\prime}+p^{n+1} \mathbb{Z}_{p}\right)\right)\right|_{p} \\
& \leq \max _{c^{\prime}+p^{n+1} \mathbb{Z}_{p} \subseteq X}\left\{\frac{\varepsilon}{M+1} \cdot M\right\}<\varepsilon .
\end{aligned}
$$

Therefore, $\left(S_{n,\left(x_{c, n}\right)}\right)_{n \geq n_{0}}$ is Cauchy in \mathbb{Q}_{p}, so $\lim _{n \rightarrow \infty} S_{n,\left(x_{c, n}\right)}$ exists in \mathbb{Q}_{p}. Now to show that this sum is independent of the choice of sample points. For each $n \geq n_{0}$, choose sample points $y_{c, n} \in c+p^{n} \mathbb{Z}_{p}$ (possibly different from $x_{c, n}$). Just as before, fix $\varepsilon>0$ and choose $N=N(\varepsilon) \geq n_{0}$. Then for each $n \geq N$, we have

$$
\begin{aligned}
\left|S_{n,\left(x_{c, n}\right)}-S_{n,\left(y_{c, n}\right)}\right|_{p} & =\left|\sum_{c+p^{n} \mathbb{Z}_{p} \subseteq X}\left(f\left(x_{c, n}\right)-f\left(y_{c, n}\right)\right) \mu\left(c+p^{n} \mathbb{Z}_{p}\right)\right|_{p} \\
& \leq \max _{c+p^{n} \mathbb{Z}_{p} \subseteq X}\left\{\frac{\varepsilon}{M+1} \cdot M\right\}<\varepsilon .
\end{aligned}
$$

