MATH8510 Lecture 19 Notes

Charlie Conneen

October 7, 2022

Some General Facts about Riemann Integration

Suppose $X \subseteq \mathbb{Q}_p$ is compact open, and μ a measure on X.

1. The \mathbb{Q}_p -vector space $C(X,\mathbb{Q}_p)$ of continuous functions $X \to \mathbb{Q}_p$ has a "sup norm" defined by

$$||f||_p \coloneqq \sup_{x \in X} |f(x)|_p$$

which makes $C(X, \mathbb{Q}_p)$ into a complete (ultra-)metric space. $LC(X, \mathbb{Q}_p)$ is a dense linear subspace of $C(X, \mathbb{Q}_p)$.

2. The Riemann integral $\left(C(X,\mathbb{Q}_p),\|\cdot\|_p\right) \to \left(\mathbb{Q}_p,|\cdot|_p\right)$ which sends a continuous function f to $\int_X f \, \mathrm{d}\mu$ is a continuous \mathbb{Q}_p -linear functional that extends the original definition of $\mu \colon \mathrm{LC}(X,\mathbb{Q}_p) \to \mathbb{Q}_p$.

Back to Bernoulli Distributions

We recently showed that for each k > 0 and each $\alpha \in \mathbb{Z} \setminus p\mathbb{Z}$ with $\alpha \neq 1$, the regularized Bernoulli distribution $\mu_{k,\alpha} \in (LC(X,\mathbb{Q}_p))^*$ is a *measure*, satisfying

$$\left|\mu_{k,\alpha}(c+p^n\mathbb{Z}_p) - kc^{k-1}\mu_{1,\alpha}(c+p^n\mathbb{Z}_p)\right|_p \le p^{\operatorname{ord}_p(D_k) - n}$$

Theorem. If X is a compact open subset of \mathbb{Z}_p , k > 0, and $\alpha \in \mathbb{Z} \setminus p\mathbb{Z}$ with $\alpha \neq 1$, then

$$\int_X d\mu_{k,\alpha}(x) = \int_X kx^{k-1} d\mu_{1,\alpha}(x).$$

Proof. Fix k, α as given and choose $n_0 \in \mathbb{N}$ such that, for every $n \geq n_0$, X can be written as

$$X = \bigsqcup_{c} c + p^{n} \mathbb{Z}_{p}$$

Then for any such $n \geq n_0$, we have:

$$\int_X d\mu_{k,\alpha}(x) = \mu_{k,\alpha}(x) = \sum_{c+p^n \mathbb{Z}_p \subseteq X} \mu_{k,\alpha}(c+p^n \mathbb{Z}_p)$$
$$= \sum_{c+p^n \mathbb{Z}_p} \left(kc^{k-1} \mu_{1,\alpha}(c+p^n \mathbb{Z}_p) \right) + \frac{z_n}{D_k} \cdot p^n$$

for some $z_n \in \mathbb{Z}_p$. Taking $n \to \infty$ yields

$$\left| \frac{z_n}{D_k} \cdot p^n \right|_p \to 0$$

and hence,

$$\int_X d\mu_{k,\alpha}(x) = \int_X kx^{k-1} d\mu_{1,\alpha}(x).$$

While the above argument is fairly straightforward, things are particularly simple when $X = p^n \mathbb{Z}_p \subseteq \mathbb{Z}_p$:

$$\int_{p^n \mathbb{Z}_p} kx^{k-1} d\mu_{1,\alpha} = \int_{p^n \mathbb{Z}_p} 1 d\mu_{k,\alpha}(x) = \mu_{k,\alpha}(p^n \mathbb{Z}_p)$$

$$= \mu_{B_k}(p^n \mathbb{Z}_p) - \alpha^{-k} \mu_{B_k}(\alpha \cdot p^n \mathbb{Z}_p)$$

$$= p^{n(k-1)} \cdot B_k \left(\frac{0}{p^n}\right) - \alpha^{-k} p^{n(k-1)} B_k \left(\frac{0}{p^n}\right)$$

$$= p^{n(k-1)} \left(1 - \alpha^{-k}\right) B_k.$$

This integral computation has a nice consequence: if instead we consider the circle $X = p^n \mathbb{Z}_p^{\times} = p^n \mathbb{Z}_p \setminus p^{n+1} \mathbb{Z}_p$ inside of \mathbb{Z}_p , we see that

$$\int_{p^{n}\mathbb{Z}_{p}^{\times}} kx^{k-1} d\mu_{1,\alpha}(x) = \int_{p^{n}\mathbb{Z}_{p}^{\times}} 1 d\mu_{k,\alpha}(x) = \mu_{k,\alpha}(p^{n}\mathbb{Z}_{p})
= \mu_{k,\alpha}(p^{n}\mathbb{Z}_{p}) - \mu_{k,\alpha}(p^{n+1}\mathbb{Z}_{p})
= p^{n(k-1)} (1 - \alpha^{-k}) (1 - p^{k-1}) B_{k}
= p^{n(k-1)} \cdot k(\alpha^{-1} - 1) \cdot (1 - p^{k-1}) \left(\frac{-B_{k}}{k}\right)
= p^{n(k-1)} \cdot k(\alpha^{-1} - 1) \cdot \zeta_{p}(1 - k).$$

This means that the function $\zeta_p \in H(\mathbb{C} \setminus \{1\})$ (originally defined by $\zeta_p(s) := (1 - p^{-s})\zeta(s)$) satisfies

$$\zeta_{p}(1-k) = (1-p^{k-1})\left(\frac{-B_{k}}{k}\right) = \frac{1}{p^{n(k-1)}(\alpha^{-k}-1)} \cdot \frac{1}{k} \cdot \mu_{k,\alpha}(p^{n}\mathbb{Z}_{p}^{\times})$$

$$= \frac{1}{p^{n(k-1)}(\alpha^{-k}-1)} \cdot \frac{1}{k} \int_{p^{n}\mathbb{Z}_{p}^{\times}} d\mu_{k,\alpha}(x)$$

$$= \frac{1}{p^{n(k-1)}(\alpha^{-k}-1)} \int_{p^{n}\mathbb{Z}_{p}^{\times}} x^{k-1} d\mu_{1,\alpha}$$

for all $k \geq 1$, and any choice of $n \geq 0$ and $\alpha \in \mathbb{Z} \setminus p\mathbb{Z}$ with $\alpha \neq 1$.

Corollary. Given any $\alpha \in \mathbb{Z} \setminus p\mathbb{Z}$ with $\alpha \neq 1$, we have

$$\zeta_p(1-k) = \left(1-p^k\right)\left(\frac{-B_k}{k}\right) = \frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_p^\times} x^{k-1} \,\mathrm{d}\mu_{1,\alpha}(x).$$

The integral in the statement of the above Corollary given by

$$\int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) \tag{1}$$

is the *Mellin-Mazur transform* of $\chi_{\mathbb{Z}_p^{\times}}$. We will *p*-adically interpolate $\zeta_p(1-k)$. Note that its dependence on k is much more transparent than that of B_k .

Theorem. Fix p an odd prime and define $S_{s_0} := \{s_0 + m(p-1) \mid m \in \mathbb{Z}_{\geq 0}\}$ for each $s_0 \in \{0, 1, \ldots, p-2\}$. The following are true:

- 1. If $s_0 \neq 0$, then $\frac{B_k}{k} \in \mathbb{Z}_{(p)}$ for all $k \in S_{s_0}$.
- 2. If $s_0 \neq 0$, then $(1 p^{k-1}) \frac{B_k}{k} \equiv (1 p^{k'-1}) \frac{B_{k'}}{k'} \pmod{p^{n+1}}$ for all $k, k' \in S_{s_0}$ satisfying $k \equiv k' \pmod{p^n}$.
- 3. If $s_0 = 0$, then $pB_k \equiv -1 \pmod{p}$ for all positive $k \in S_{s_0}$.

We will prove this theorem next lecture.