MATH8510 Lecture 2 Notes

Charlie Conneen

August 26, 2022

Absolute Values

Definition. Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that the following conditions hold:

- 1. $|x| = 0 \iff x = 0$ for all $x \in K$.
- 2. $|xy| = |x| \cdot |y|$ for all $x, y \in K$.
- 3. $|x+y| \le |x| + |y|$ for all $x, y \in K$.

Proposition. Every K has an absolute value.

Proof. Let K be any field and let $|\cdot|_0$ be the constant function $x \mapsto 0$.

A few initial comments: conditions (1) and (2) show that |1| = 1. (1) and (3) together endow K with a metric d(x, y) = |x - y|, and the metric topology is generated by open balls $B_r(y) \coloneqq \{x \in K \mid |x - y| < r\}.$

Condition (2) on its own shows that |x| > 0 for every unit $x \in K^{\times} = K \setminus \{0\}$ whenever $|\cdot|$ is not the "trivial absolute value" from the above proposition. In particular, it shows that $|\cdot|: K^{\times} \to \mathbb{R}_{>0}$ is a group homomorphism. Its kernel contains the roots of unity (which we will denote $\mu(K) \subseteq K$) since

$$x \in \mu(K) \implies x^m = 1$$
$$\implies |x|^m = 1$$
$$\implies |x^m| = 1.$$

Definition. Let $|\cdot| : K \to \mathbb{R}_{\geq 0}$ be an absolute value on a field K. the **value group** of the pair $(K, |\cdot|)$ is the image of the group homomorphism $|\cdot| : K^{\times} \to \mathbb{R}_{>0}$. We will denote the value group by Z_K .

Definition. Suppose K is a field with absolute value $|\cdot|$. We say that $|\cdot|$ is **Archimedean** if Z_K is unbounded with respect to $|\cdot|$, that is, for every $r \in \mathbb{R}_{>0}$, there exists some $x \in Z_K$ such that |x| > r. Otherwise, we say that $|\cdot|$ is **non-Archimedean**.

Theorem. Suppose K is a field, $|\cdot|$ an absolute value on K. The following are equivalent:

- 1. $|\cdot|$ is non-Archimedean;
- 2. $|z| \leq 1$ for all $z \in \mathbb{Z}_K$;
- 3. $|x+y| \le \max\{|x|, |y|\}$ for all $x, y \in K$.

Proof. We will prove $(1) \Rightarrow (2) \Rightarrow (3)$ first.

Suppose \neg (2), i.e. there exists some $z \in Z_K$ such that |z| > 1. Then given any r > 0, there exists some $n \in \mathbb{N}$ such that $|z^n| = |z|^n > r$. This shows \neg (1). So (1) \Rightarrow (2).

Now suppose $|z| \leq 1$ for all $z \in Z_K$. Now suppose $x, y \in K$. Then for all $n \in \mathbb{N}$,

$$|x+y|^{n} = |(x+y)^{n}| = \left|\sum_{j=0}^{n} \binom{n}{j} \cdot x^{j} y^{n-j}\right| \le \sum_{j=0}^{n} \left|\binom{n}{j}\right| \cdot |x|^{j} |y|^{n-j}$$
$$\le \sum_{j=0}^{n} \max\{|x|, |y|\}^{n} = (n+1) \cdot \max\{|x|, |y|\}^{n}$$

Thus $|x+y| \leq \sqrt[n]{n+1} (\max\{|x|,|y|\})$. Since $\sqrt[n]{n+1} \to 1$ as $n \to \infty$, it follows that $|x+y| \leq \max\{|x|,|y|\}$. So $(2) \Rightarrow (3)$.

To see that $(3) \Rightarrow (2)$, we use induction; if $|z| \le 1$ for some $z \in Z_K$, then we may observe that $|z \pm 1| \le \max\{|z|, |\pm 1|\} \le 1$. The fact that $(2) \Rightarrow (1)$ is immediate.

Theorem. Let K be a field, $|\cdot|$ a non-Archimedean absolute value on K. Then the closed unit ball $\mathcal{O}_K \coloneqq \{x \in K \mid |x| \leq 1\}$ is a subring of K. Furthermore, the open unit ball $\mathfrak{m}_K \coloneqq \{x \in K \mid |x| < 1\}$ is the unique maximal ideal in \mathcal{O}_K .

Proof. Observe that $\pm 1 \in \mathcal{O}_K$, and for any $x, y \in \mathcal{O}_K$,

$$|x+y| \le \max\{|x|, |y|\} \le 1$$

and thus $x + y \in \mathcal{O}_K$. Similarly, $|xy| = |x| \cdot |y| \leq 1$, so $xy \in \mathcal{O}_K$. So indeed \mathcal{O}_K is a subring of K. The proof that \mathfrak{m}_K is an ideal of \mathcal{O}_K is similarly clear. So it is left to show that \mathfrak{m}_K is a maximal, and is unique with this property.

Let $I \subseteq \mathcal{O}_K$ be any ideal such that $I \not\subseteq \mathfrak{m}_K$. Then $\exists x \in I \setminus \mathfrak{m}_K$. Since $x \in \mathcal{O}_K \setminus \mathfrak{m}_K$, we see that |x| = 1. Furthermore, observe that $\mathcal{O}_K \setminus \mathfrak{m}_K = \{x \in K \mid |x| = 1\}$, so $x^{-1} \in \mathcal{O}_K$, or in other words, x is invertible in \mathcal{O}_K . So I contains a unit, and hence $I = \mathcal{O}_K$.

Corollary. If $(K, |\cdot|)$ is a non-Archimedean field, then \mathcal{O}_K is a local ring.

Corollary. The group of units in \mathcal{O}_K is

$$\mathcal{O}_K^{\times} = \mathcal{O}_K \setminus \mathfrak{m}_K = \{ x \in K \mid |x| = 1 \}$$

which is the "unit circle" in K.

The quotient $\kappa \coloneqq \mathcal{O}_K/\mathfrak{m}_K$ is a field, called the **residue field** of $(K, |\cdot|)$.