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Absolute Values

Definition. Let K be a field. An absolute value on K is a function | ∙ | : K → R≥0 such that
the following conditions hold:

1. |x| = 0 ⇐⇒ x = 0 for all x ∈ K.

2. |xy| = |x| ∙ |y| for all x, y ∈ K.

3. |x + y| ≤ |x| + |y| for all x, y ∈ K.

Proposition. Every K has an absolute value.

Proof. Let K be any field and let | ∙ |0 be the constant function x 7→ 0. �

A few initial comments: conditions (1) and (2) show that |1| = 1. (1) and (3) together
endow K with a metric d(x, y) = |x − y|, and the metric topology is generated by open balls
Br(y) := {x ∈ K | |x − y| < r}.

Condition (2) on its own shows that |x| > 0 for every unit x ∈ K× = K \ {0} whenever
| ∙ | is not the “trivial absolute value” from the above proposition. In particular, it shows
that | ∙ | : K× → R>0 is a group homomorphism. Its kernel contains the roots of unity (which
we will denote μ(K) ⊆ K) since

x ∈ μ(K) =⇒ xm = 1

=⇒ |x|m = 1

=⇒ |xm| = 1.

Definition. Let | ∙ | : K → R≥0 be an absolute value on a field K. the value group of the pair
(K, | ∙ |) is the image of the group homomorphism | ∙ | : K× → R>0. We will denote the value group
by ZK .

Definition. Suppose K is a field with absolute value | ∙ |. We say that | ∙ | is Archimedean if ZK

is unbounded with respect to | ∙ |, that is, for every r ∈ R>0, there exists some x ∈ ZK such that
|x| > r. Otherwise, we say that | ∙ | is non-Archimedean.
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Theorem. Suppose K is a field, | ∙ | an absolute value on K. The following are equivalent:

1. | ∙ | is non-Archimedean;

2. |z| ≤ 1 for all z ∈ ZK ;

3. |x + y| ≤ max {|x| , |y|} for all x, y ∈ K.

Proof. We will prove (1) ⇒ (2) ⇒ (3) first.
Suppose ¬ (2), i.e. there exists some z ∈ ZK such that |z| > 1. Then given any r > 0,

there exists some n ∈ N such that |zn| = |z|n > r. This shows ¬ (1). So (1) ⇒ (2).
Now suppose |z| ≤ 1 for all z ∈ ZK . Now suppose x, y ∈ K. Then for all n ∈ N,

|x + y|n = |(x + y)n| =
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Thus |x + y| ≤ n
√

n + 1 (max {|x| , |y|}). Since n
√

n + 1 → 1 as n → ∞, it follows that
|x + y| ≤ max {|x| , |y|}. So (2) ⇒ (3).

To see that (3) ⇒ (2), we use induction; if |z| ≤ 1 for some z ∈ ZK , then we may observe
that |z ± 1| ≤ max {|z| , |±1|} ≤ 1. The fact that (2) ⇒ (1) is immediate. �

Theorem. Let K be a field, | ∙ | a non-Archimedean absolute value on K. Then the closed unit ball
OK := {x ∈ K | |x| ≤ 1} is a subring of K. Furthermore, the open unit ball mK := {x ∈ K | |x| < 1}
is the unique maximal ideal in OK .

Proof. Observe that ±1 ∈ OK , and for any x, y ∈ OK ,

|x + y| ≤ max {|x| , |y|} ≤ 1

and thus x + y ∈ OK . Similarly, |xy| = |x| ∙ |y| ≤ 1, so xy ∈ OK . So indeed OK is a subring
of K. The proof that mK is an ideal of OK is similarly clear. So it is left to show that mK

is a maximal, and is unique with this property.
Let I ⊆ OK be any ideal such that I 6⊆ mK . Then ∃x ∈ I \mK . Since x ∈ OK \mK , we

see that |x| = 1. Furthermore, observe that OK \mK = {x ∈ K | |x| = 1}, so x−1 ∈ OK , or
in other words, x is invertible in OK . So I contains a unit, and hence I = OK . �

Corollary. If (K, | ∙ |) is a non-Archimedean field, then OK is a local ring. �

Corollary. The group of units in OK is

O×
K = OK \mK = {x ∈ K | |x| = 1} ,

which is the “unit circle” in K. �

The quotient κ := OK/mK is a field, called the residue field of (K, | ∙ |).
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