MATH8510 Lecture 20 Notes

Charlie Conneen

October 9, 2022

Last lecture, we stated the following theorem:

Theorem.¹ Fix p an odd prime and define $S_{s_0} := \{s_0 + m(p-1) \mid m \in \mathbb{Z}_{\geq 0}\}$ for each $s_0 \in \{0, 1, \ldots, p-2\}$. The following are true:

- 1. If $s_0 \neq 0$, then $\frac{B_k}{k} \in \mathbb{Z}_{(p)}$ for all $k \in S_{s_0}$.
- 2. If $s_0 \neq 0$, then $(1 p^{k-1}) \frac{B_k}{k} \equiv (1 p^{k'-1}) \frac{B_{k'}}{k'} \pmod{p^{n+1}}$ for all $k, k' \in S_{s_0}$ satisfying $k \equiv k' \pmod{p^n}$.
- 3. If $s_0 = 0$, then $pB_k \equiv -1 \pmod{p}$ for all positive $k \in S_{s_0}$.

Proof. Since $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order p-1, there exists some $\alpha \in \{2, 3, ..., p-1\}$ such that $\alpha^{p-1} \equiv 1 \pmod{p}$, but $\alpha^k \not\equiv 1 \pmod{p}$ for all 0 < k < p-1. Such an α satisfies $\alpha \in \mathbb{Z} \setminus p\mathbb{Z}$, $\alpha \not\equiv 1$, and $\alpha^{\pm k} \equiv 1 \pmod{p\mathbb{Z}_p}$ for all $k \in S_{s_0}$ with $s_0 \not\equiv 0$.

Fix such an α as above and $k \in S_{s_0}$ where $s_0 \neq 0$. Then $\alpha^{-k} - 1 \in \mathbb{Z}_p$, and $p^{k-1} - 1 \in \mathbb{Z}_p^{\times}$. Therefore:

$$\left| \frac{B_k}{k} \right|_p = \left| (p^{k-1} - 1) \frac{B_k}{k} \right|_p = \left| \frac{1}{\alpha^{-k} - 1} \int_{\mathbb{Z}_p^\times} x^{k-1} d\mu_{1,\alpha}(x) \right|_p$$
$$= \left| \int_{\mathbb{Z}_p^\times} x^{k-1} d\mu_{1,\alpha}(x) \right|_p = \left| \mu_{1,\alpha}(\mathbb{Z}_p^\times) \right|_p \le 1.$$

This proves part (1).

For (2), fix again some α and $s_0 \neq 0$ as before, and suppose $k, k' \in S_{s_0}$ satisfy $k \equiv k' \pmod{p^n \mathbb{Z}}$. Then we have the following:

$$\left| \frac{1}{\alpha^{-k} - 1} - \frac{1}{\alpha^{-k'} - 1} \right|_{p} = \left| \frac{\alpha^{-k'} - \alpha^{-k}}{(\alpha^{-k} - 1)(\alpha^{-k'} - 1)} \right|_{p} = \left| \alpha^{-k'} - \alpha^{-k} \right|_{p}$$
$$= \left| \alpha^{-k} - \alpha^{-k'} \right|_{p} < |k - k'|_{p} \le p^{-n}$$

¹ Parts (1) and (2) of this theorem are due to Kummer. Part (3) is due to Von Staudt and Clausen.

Therefore:

$$\left| \int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) - \int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) \right|_p = \left| \int_{\mathbb{Z}_p^{\times}} x^{k'-1} \left(x^{k-k'} - 1 \right) \, \mathrm{d}\mu_{1,\alpha}(x) \right|_p$$

$$\leq \left| \mu_{1,\alpha} \left(\mathbb{Z}_p^{\times} \right) \right|_p \cdot \sup_{x \in \mathbb{Z}_p^{\times}} \left| x^{k-k'} - 1 \right|_p$$

$$< \left| k - k' \right|_p \leq p^{-n}$$

Therefore:

$$(1 - p^{k-1}) \frac{B_k}{k} = \frac{-1}{\alpha^{-k} - 1} \int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x)$$

$$\equiv \frac{-1}{\alpha^{-k'} - 1} \int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) \pmod{p^{n+1}} \mathbb{Z}_p)$$

$$\equiv \frac{-1}{\alpha^{-k'} - 1} \int_{\mathbb{Z}_p^{\times}} x^{k'-1} \, \mathrm{d}\mu_{1,\alpha}(x) \pmod{p^{n+1}} \mathbb{Z}_p)$$

$$= \left(1 - p^{k'-1}\right) \frac{B_{k'}}{k'}.$$

This concludes the proof of (2).

For (3), let $\alpha = 1 + p$, and suppose k is a positive multiple of p - 1. Note that

$$pB_k = \frac{-kp}{1 - p^{k-1}} \cdot \zeta_p(1 - k) = \frac{-kp}{(\alpha^{-k} - 1)(1 - p^{k-1})} \int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x).$$

Since p > 2 by assumption, $k \ge 2$. Observe that $1 + p\mathbb{Z}_p$ is a multiplicative subgroup² of \mathbb{Z}_p^{\times} , we have

$$\frac{(\alpha^{-k} - 1)(1 - p^{k-1})}{-kp} = \alpha^{-k} \cdot \frac{\alpha^k - 1}{kp} \cdot (1 - p^{k-1})$$

$$= (1+p)^{-k} \left(1 + p \sum_{j=0}^{k-2} \frac{1}{j+2} {k-1 \choose j+1} p^j \right) \cdot \left(1 + p(-p^{k-2})\right)$$

$$\in 1 + p\mathbb{Z}_p.$$

Hence, $\frac{-kp}{(\alpha^{-k}-1)(1-p^{k-1})} \equiv 1 \pmod{p\mathbb{Z}_p}$. So it now suffices to check that

$$\int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) \equiv -1 \pmod{p\mathbb{Z}_p}.$$

To this end, note that $k \equiv m(p-1)$ for some m > 0, so $\forall x \in \mathbb{Z}_p^{\times}$,

$$x^{k-1} = (x^{p-1})^m \cdot x^{-1} \equiv x^{-1} \pmod{p\mathbb{Z}_p}$$

²The only thing to check here is that $1+p\mathbb{Z}_p$ is closed under inversion, which follows by a quick computation using a "geometric series"-like expansion. Left as an exercise.

And therefore:

$$\left| \int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) - \int_{\mathbb{Z}_p^{\times}} x^{-1} \, \mathrm{d}\mu_{1,\alpha}(x) \right|_p \le \left| \mu_{1,\alpha}(\mathbb{Z}_p^{\times}) \right|_p \cdot \sup_{x \in \mathbb{Z}_p^{\times}} \left| x^{k-1} - x^{-1} \right|_p \le \frac{1}{p}$$

From this, it follows that

$$\int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) \equiv \int_{\mathbb{Z}_p^{\times}} x^{-1} \, \mathrm{d}\mu_{1,\alpha}(x) \equiv \sum_{d=1}^{p-1} \int_{d+p\mathbb{Z}_p} x^{-1} \, \mathrm{d}\mu_{1,\alpha}(x) \pmod{p\mathbb{Z}_p}.$$

But for each $d \in \{1, 2, \dots, p-1\}$, we have

$$|x^{-1} - d^{-1}|_p = \frac{|x - d|_p}{|x|_p |d|_p} = |x - d|_p < 1$$

for all $x \in d + p\mathbb{Z}_p$. So each summand satisfies

$$\int_{d+p\mathbb{Z}_p} x^{-1} \, \mathrm{d}\mu_{1,\alpha}(x) \equiv \int_{d+p\mathbb{Z}_p} d^{-1} \, \mathrm{d}\mu_{1,\alpha}(x) \pmod{p\mathbb{Z}_p}
= d^{-1} \cdot \mu_{1,\alpha}(d+p\mathbb{Z}_p)
= d^{-1} \left(\mu_{B_1}(d+p\mathbb{Z}_p) - (1+p)^{-1}\mu_{B_1}((1+p)(d+p\mathbb{Z}_p))\right)
= d^{-1} \left(\mu_{B_1}(d+p\mathbb{Z}_p) - (1+p)^{-1}\mu_{B_1}(d+p\mathbb{Z}_p)\right)
= d^{-1} \left(1 - \frac{1}{1+p}\right) B_1 \left(\frac{d}{p}\right)
= d^{-1} \left(\frac{p}{p+1}\right) \left(\frac{d}{p} - \frac{1}{2}\right)
= (1+p)^{-1} \left(1+p \cdot \frac{-1}{d}\right)
\equiv 1 \pmod{p\mathbb{Z}_p}.$$

Therefore:

$$\int_{\mathbb{Z}_p^{\times}} x^{k-1} \, \mathrm{d}\mu_{1,\alpha}(x) \equiv \sum_{d=1}^{p-1} 1 \equiv -1 \pmod{p\mathbb{Z}_p}.$$

Next time, we will finish up our discussion on Kummer congruences.