MATHS8510
Lecture 20 Notes

Charlie Conneen

October 9, 2022

Last lecture, we stated the following theorem:

Theorem.! Fiz p an odd prime and define Ss, == {so+m(p—1)|m € Z>o} for each sy €
{0,1,...,p—2}. The following are true:

1. If s # 0, then % € Ly for all k € S, .

2. If sy # 0, then (1 —pk_l)% = (1—pk/_1)% (mod p"*1) for all k, k' € Sy, satisfying
kE=Ek (mod p™).

3. If s =0, then pBr, = —1 (mod p) for all positive k € S, .

Proof. Since (Z/pZ)™ is cyclic of order p — 1, there exists some a € {2,3,...,p — 1} such
that o?~! = 1 (mod p), but o # 1 (mod p) for all 0 < k < p — 1. Such an « satisfies
a € Z\pZ, a # 1, and a*F =1 (mod pZ,) for all k € S, with sy # 0.

Fix such an « as above and k € S, where sy # 0. Then ™" —1 € Z,, and p*~' —1 € Ly
Therefore:
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This proves part (1).
For (2), fix again some « and sg # 0 as before, and suppose k, k' € S, satisfy k = £/
(mod p"Z). Then we have the following:
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! Parts (1) and (2) of this theorem are due to Kummer. Part (3) is due to Von Staudt and Clausen.



Therefore:
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This concludes the proof of (2).
For (3), let @« = 1+ p, and suppose k is a positive multiple of p — 1. Note that
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Since p > 2 by assumption, k > 2. Observe that 1 + pZ, is a multiplicative subgroup? of
Z, , we have
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Hence, (a_kfl_)lszpk_l) =1 (mod pZ,). So it now suffices to check that
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To this end, note that k£ = m(p — 1) for some m > 0, so Va € 7,

21— (xp—l)m cx =271 (mod PZy)

2The only thing to check here is that 1+ pZ, is closed under inversion, which follows by a quick computation
using a “geometric series”-like expansion. Left as an exercise.



And therefore:
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From this, it follows that
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But for each d € {1,2,...,p — 1}, we have
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for all € d + pZ,. So each summand satisfies
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=1 (mod pZ,).
Therefore:
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Next time, we will finish up our discussion on Kummer congruences.



