# MATH8510 <br> Lecture 21 Notes 

Charlie Conneen

October 12, 2022

We have a Corollary of the theorem which we proved last lecture:
Corollary. For $k=1$ or $k$ an even positive integer, we have

$$
B_{k}+\sum_{\substack{p \text { prime } \\(p-1) \mid k}} \frac{1}{p} \in \mathbb{Z} .
$$

Proof. An exercise from Koblitz's text implies that part (3) of the Theorem holds for $p=2$ as well.So let $q$ be a prime such that $(q-1) \mid k$. Then $q B_{k} \equiv-1\left(\bmod q \mathbb{Z}_{(q)}\right)$. In other words,

$$
B_{k}+\frac{1}{q} \in \mathbb{Z}_{(q)} .
$$

But any prime $p \neq q$ satisfies $\frac{1}{p} \in \mathbb{Z}_{(q)}$. Thus

$$
B_{k}+\sum_{(p-1) \mid k} \frac{1}{p} \in \mathbb{Z}_{(q)}
$$

Now if $(q-1) \nmid k$, then $\frac{B_{k}}{k} \in \mathbb{Z}_{(q)}$ by Theorem (1). In particular, $B_{k} \in \mathbb{Z}_{(q)}$, and hence

$$
B_{k}+\sum_{\substack{p \text { prime } \\(p-1) \mid k}} \frac{1}{p} \in \mathbb{Z}_{(q)}
$$

for all primes $q$, therefore

$$
B_{k}+\sum_{\substack{p \text { prime } \\(p-1) \mid k}} \frac{1}{p} \in \bigcap_{q} \mathbb{Z}_{(q)}=\mathbb{Z}
$$

Theorem (2) says that for $p>2$ and $s_{0} \in\{1,2, \ldots, p-2\}$, the function $k \mapsto$ $\zeta_{p}(1-k)=\frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \mathrm{~d} \mu_{1, \alpha}(x)$ is uniformly continuous (w.r.t. the $p$-adic metric) on $S_{s_{0}}=\left\{s_{0}+(p-1) m \mid m \geq 0\right\}$. Hence:

Theorem. For each $p>2$ and $s_{0} \in\{1,2, \ldots, p-2\}$, the $s_{0}$-branch of the $p$-adic zeta function $\zeta_{p, s_{0}}: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Q}_{p}$ given by

$$
\zeta_{p, s_{0}}(m):=\frac{1}{\alpha^{-\left(s_{0}+(p-1) m\right)}-1} \cdot \int_{\mathbb{Z}_{p}^{\times}} x^{s_{0}+(p-1) m-1} \mathrm{~d} \mu_{1, \alpha}(x)
$$

is uniformly continuous, and hence uniquely extends to a function $\zeta_{p, s_{0}} \in C\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, and is independent of our choice of $\alpha \in \mathbb{Z} \backslash p \mathbb{Z}$ with $\alpha \neq 1$.

Proof. Exercise.
Indeed, this can be extended to the $s_{0}=0$ branch, provided we exclude $m=0$. This is consistent with the fact that $\zeta_{p, 0}(m)=\zeta_{p}(1-(p-1) m)=\left(1-p^{(p-1) m-1}\right) \zeta(1-(p-1) m)$ is undefined at $m=0$.

## A bit of algebraic number theory.

Definition. Given a field $K$ with an absolute value $|\cdot|$ and a vector space $V$ over $K$, we call a function $\|\cdot\|: V \rightarrow \mathbb{R}_{\geq 0}$ a norm if the following conditions hold:

1. $\forall v \in V,\|v\|=0 \Longleftrightarrow v=0$;
2. $\forall v \in V, \forall \alpha \in K,\|\alpha v\|=|\alpha| \cdot\|v\|$;
3. $\forall u, v \in V,\|u+v\| \leq\|u\|+\|v\|$.

We say that the norm $\|\cdot\|$ is non-Archimedean if the third condition can be refined to the strong triangle inequality:

$$
\|u+v\| \leq \max \{\|u\|,\|v\|\}
$$

Just as an absolute value defines a metric topology on a field, a norm defines a metric topology on a vector space via the induced metric

$$
(u, v) \mapsto\|u-v\| .
$$

Example. If $\operatorname{dim}_{K}(V)<\infty$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for $V$ over $K$, then the " $r$-norm" for $r \geq 1$ and the "sup-norm" are respectively defined as follows, for $v=\sum_{i=1}^{n} a_{i} v_{i} \in V$ :

$$
\begin{aligned}
\|v\|_{r} & :=\left(\left|a_{1}\right|^{r}+\cdots+\left|a_{n}\right|^{r}\right)^{1 / r} \\
\|v\|_{\infty} & :=\sup \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}
\end{aligned}
$$

Proposition. If $(K,|\cdot|)$ is non-Archimedean, then so is $\left(V,\|\cdot\|_{\infty}\right)$.
For this reason, it seems that $\|\cdot\|_{\infty}$ is a norm best suited to $V$ over a non-Archimedean field $K$. There is some bad news: all of these examples depend critically on a choice of basis. In particular, we want the topology on $V$ to be independent of the choice of basis. However, there is some good news.

Definition. Two norms $\|\cdot\|,\|\cdot\|^{\prime}$ on a vector space $V$ over $(K,|\cdot|)$ are said to be equivalent if they induce the same topology.

The good news is the statement of the following exercise.
Exercise. Two norms $\|\cdot\|,\|\cdot\|^{\prime}$ on a vector space $V$ over $(K,|\cdot|)$ are equivalent if and only if there exist $C, D>0$ such that $\|v\| \leq C \cdot\|v\|^{\prime}$ and $\|v\|^{\prime} \leq D\|v\|$ for all $v \in V$.

Theorem. If $(K,|\cdot|)$ is complete w.r.t. its absolute value and $V$ is a finite dimensional vector space over $K$, then all norms on $V$ are equivalent. Furthermore, for any such norm $\|\cdot\|$, the metric space $(V,\|\cdot\|)$ is complete.

Proof sketch. Fix a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for $V$ over $K$. Check that $\left(V,\|\cdot\|_{\infty}\right)$ is complete (straightforward). Now suppose that $\|\cdot\|$ is any other norm on $V$, and let $C=$ $n \cdot \max _{1 \leq i \leq n}\left\{\left\|v_{i}\right\|\right\}$. Then $C>0$ and each $v=\sum_{i=1}^{n} a_{i} v_{i} \in V$ satisfies

$$
\|v\| \leq \sum_{i=1}^{n}\left|a_{i}\right|\left\|v_{i}\right\| \leq n \cdot \max _{1 \leq i \leq n}\left\{\left|a_{i}\right|\right\} \cdot \max _{1 \leq i \leq n}\left\{\left\|v_{i}\right\|\right\} \leq C \cdot\|v\|_{\infty} .
$$

The other direction is more involved, but can be found on pp.174-176 in Gouvêa's text. Then the following easy exercises will complete the proof.

Exercise. Verify that equivalence of norms is transitive.
Exercise. Check that if two norms are equivalent, and $V$ is complete with respect to one of them, then it is complete with respect to the other as well.

