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We have a Corollary of the theorem which we proved last lecture:

Corollary. For k = 1 or k an even positive integer, we have

Bk +
∑

p prime
(p−1)|k

1
p
∈ Z.

Proof. An exercise from Koblitz’s text implies that part (3) of the Theorem holds for p = 2
as well.So let q be a prime such that (q − 1) | k. Then qBk ≡ −1 (mod qZ(q)). In other
words,

Bk +
1

q
∈ Z(q).

But any prime p 6= q satisfies 1
p
∈ Z(q). Thus

Bk +
∑

(p−1)|k

1

p
∈ Z(q).

Now if (q − 1) - k, then Bk

k
∈ Z(q) by Theorem (1). In particular, Bk ∈ Z(q), and hence

Bk +
∑

p prime
(p−1)|k

1

p
∈ Z(q)

for all primes q, therefore

Bk +
∑

p prime
(p−1)|k

1

p
∈
⋂

q

Z(q) = Z. �

Theorem (2) says that for p > 2 and s0 ∈ {1, 2, . . . , p − 2}, the function k 7→
ζp(1 − k) = 1

α−k−1

∫
Z×

p
xk−1 dμ1,α(x) is uniformly continuous (w.r.t. the p-adic metric) on

Ss0 = {s0 + (p − 1)m | m ≥ 0}. Hence:
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Theorem. For each p > 2 and s0 ∈ {1, 2, . . . , p − 2}, the s0-branch of the p-adic zeta function
ζp,s0 : Z≥0 → Qp given by

ζp,s0(m) :=
1

α−(s0+(p−1)m) − 1
∙
∫

Z×
p

xs0+(p−1)m−1 dμ1,α(x)

is uniformly continuous, and hence uniquely extends to a function ζp,s0 ∈ C(Zp,Qp), and is inde-
pendent of our choice of α ∈ Z \ pZ with α 6= 1.

Proof. Exercise. �

Indeed, this can be extended to the s0 = 0 branch, provided we exclude m = 0. This is
consistent with the fact that ζp,0(m) = ζp(1 − (p − 1)m) =

(
1 − p(p−1)m−1

)
ζ(1 − (p − 1)m)

is undefined at m = 0.

A bit of algebraic number theory.

Definition. Given a field K with an absolute value | ∙ | and a vector space V over K, we call a
function ‖ ∙ ‖ : V → R≥0 a norm if the following conditions hold:

1. ∀v ∈ V, ‖v‖ = 0 ⇐⇒ v = 0;

2. ∀v ∈ V, ∀α ∈ K, ‖αv‖ = |α| ∙ ‖v‖;

3. ∀u, v ∈ V, ‖u + v‖ ≤ ‖u‖ + ‖v‖.

We say that the norm ‖ ∙ ‖ is non-Archimedean if the third condition can be refined to the strong
triangle inequality:

‖u + v‖ ≤ max{‖u‖, ‖v‖}.

Just as an absolute value defines a metric topology on a field, a norm defines a metric
topology on a vector space via the induced metric

(u, v) 7→ ‖u − v‖.

Example. If dimK(V ) < ∞ and {v1, . . . , vn} is a basis for V over K, then the “r-norm” for r ≥ 1
and the “sup-norm” are respectively defined as follows, for v =

∑n
i=1 aivi ∈ V :

‖v‖r := (|a1|
r + ∙ ∙ ∙ + |an|

r)1/r

‖v‖∞ := sup{|a1|, . . . , |an|}

Proposition. If (K, | ∙ |) is non-Archimedean, then so is (V, ‖ ∙ ‖∞). �

For this reason, it seems that ‖ ∙ ‖∞ is a norm best suited to V over a non-Archimedean
field K. There is some bad news: all of these examples depend critically on a choice of basis.
In particular, we want the topology on V to be independent of the choice of basis. However,
there is some good news.
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Definition. Two norms ‖ ∙ ‖, ‖ ∙ ‖′ on a vector space V over (K, | ∙ |) are said to be equivalent if
they induce the same topology.

The good news is the statement of the following exercise.

Exercise. Two norms ‖ ∙ ‖, ‖ ∙ ‖′ on a vector space V over (K, | ∙ |) are equivalent if and only if
there exist C,D > 0 such that ‖v‖ ≤ C ∙ ‖v‖′ and ‖v‖′ ≤ D‖v‖ for all v ∈ V .

Theorem. If (K, | ∙ |) is complete w.r.t. its absolute value and V is a finite dimensional vector
space over K, then all norms on V are equivalent. Furthermore, for any such norm ‖ ∙ ‖, the metric
space (V, ‖ ∙ ‖) is complete.

Proof sketch. Fix a basis {v1, . . . , vn} for V over K. Check that (V, ‖ ∙ ‖∞) is com-
plete (straightforward). Now suppose that ‖ ∙ ‖ is any other norm on V , and let C =
n ∙ max1≤i≤n{‖vi‖}. Then C > 0 and each v =

∑n
i=1 aivi ∈ V satisfies

‖v‖ ≤
n∑

i=1

|ai|‖vi‖ ≤ n ∙ max
1≤i≤n

{|ai|} ∙ max
1≤i≤n

{‖vi‖} ≤ C ∙ ‖v‖∞.

The other direction is more involved, but can be found on pp.174-176 in Gouvêa’s text. Then
the following easy exercises will complete the proof. �

Exercise. Verify that equivalence of norms is transitive.

Exercise. Check that if two norms are equivalent, and V is complete with respect to one of them,
then it is complete with respect to the other as well.
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