MATH8510
 Lecture 22 Notes

Charlie Conneen

October 14, 2022

Lifting absolute values to finite extensions

First, we recall the notion of degree of a field extension.
Definition. Let L / K be a field extension. The degree of this extension is given by

$$
[L: K]:=\operatorname{dim}_{K}(L) .
$$

Corollary (of the Theorem from last lecture). If $[L: K]<\infty$ and K is complete with respect to an absolute value $|\cdot|_{K}$, then there exists at most one absolute value $|\cdot|_{L}$ such that $|\alpha|_{L}=|\alpha|_{K}$ for all $\alpha \in K$. Furthermore, if such an absolute value exists, then $\left(L,|\cdot|_{L}\right)$ is complete.

Proof. Suppose $|\cdot|_{L},|\cdot|_{L}^{\prime}$ are two absolute values on L which restrict to $|\cdot|_{K}$ on K. Then properties (i)-(iii) of absolute values imply $|\cdot|_{L}$ and $|\cdot|_{L}^{\prime}$ are not just absolute values, but norms, treating L as a K-vector space. So the previous theorem yields some $C>0$ such that $|x|_{L} \leq C \cdot|x|_{L}^{\prime}$ for all $x \in L$.

Now take any $y \in L$. Then for all $n \in \mathbb{N}$,

$$
|y|_{L}=\left(\left|y^{n}\right|_{L}\right)^{1 / n} \leq\left(C\left|y^{n}\right|^{\prime}\right)^{1 / n}=C^{1 / n} \cdot|y|_{L}^{\prime}
$$

Take $n \rightarrow \infty$ to observe that $|y|_{L} \leq|y|_{L}^{\prime}$. By symmetry of this argument, $|y|_{L}=|y|_{L}^{\prime}$.
Completeness follows from the previous theorem, since we have obtained a norm on a finite dimensional vector space over a field which is complete.

Recall that $\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$. How do we obtain the absolute value on \mathbb{C} which extends $|\cdot|_{\infty}$? We will use the fact that $\mathbb{C}=\langle 1, i\rangle$, and use this basis to talk about multiplication by $\alpha=a+b i \in \mathbb{C}$ as

$$
(a+b i)(x+y i)=(a x-b y)+(b x+a y) i=\binom{a x-b y}{b x+a y}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\binom{x}{y} \in \mathbb{C} .
$$

In other words, $(-) \cdot \alpha: \mathbb{C} \rightarrow \mathbb{C}$ is an \mathbb{R}-linear map represented by a matrix with

$$
\left|\begin{array}{cc}
a & -b \\
b & a
\end{array}\right|=a^{2}+b^{2} \in \mathbb{R}
$$

and this determinant is independent of our choice of basis $\{1, i\}$. So this matrix representation of the multiplication map allows us to define

$$
|\alpha|_{\mathbb{C}}:=|\operatorname{det}(\mathbb{C} \xrightarrow{(-) \cdot \alpha} \mathbb{C})|_{\infty}
$$

Definition. Suppose L / K is a finite field extension. For each $\alpha \in L$, the field norm from L to $K, N_{L / K}: L \rightarrow K$, is defined by

$$
N_{L / K}(\alpha):=\operatorname{det}(L \xrightarrow{(-) \cdot \alpha} L)
$$

as a K-linear map.
A few comments:

1. This is well-defined precisely because $(-) \cdot \alpha$ is K-linear, by the distributive property in L, combined with the fact that determinants are basis-invariant.
2. Since the determinant is multiplicative, $N_{L / K}(\alpha \beta)=N_{L / K}(\alpha) \cdot N_{L / K}(\beta)$.
3. If $\alpha \in L$ happens to be in K, then

$$
N_{L / K}(\alpha)=\operatorname{det}\left(\begin{array}{lll}
\alpha & & 0 \\
& \ddots & \\
0 & & \alpha
\end{array}\right)=\alpha^{[L: K]}
$$

Recall. Given a field K and an element $\alpha \in \bar{K}$ (where \bar{K} denotes the algebraic closure of K), there exists a unique monic irreducible polynomial

$$
\mu_{\alpha, K}(X) \in K[X]
$$

called the minimal polynomial of α over K, which satisfies $\mu_{\alpha, K}(\alpha)=0 \in \bar{K}$. The conjugates of α over K are the roots of $\mu_{\alpha, K}$ in \bar{K} (possibly repeated). If the roots of $\mu_{\alpha, K}$ are all distinct, then $\mu_{\alpha, K}$ is called separable. The field $L=K(\alpha)$, the smallest subfield of \bar{K} containing K and α, satisfies $[L: K]=\operatorname{deg}\left(\mu_{\alpha, K}\right)$.

Proposition. If $\mu_{\alpha, K}$ is separable, and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq L=K(\alpha)$ are the roots of $\mu_{\alpha, K}$, then $\operatorname{Gal}(L / K)=\operatorname{Aut}(L / K)$ can be written as $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ where each σ_{i} satisfies $\sigma_{i}(\alpha)=\alpha_{i}$.

Lemma. Let K be a field, $\alpha \in \bar{K}$. The following are true:
(a) $N_{K(\alpha) / K}(\alpha)=(-1)^{n} a_{0}=\prod_{i=1}^{n} \alpha_{i}$, where $n=[L: K], a_{0}$ is the constant term of $\mu_{\alpha, K}$, and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ are the conjugates of α.
(b) If L / K is any finite extension with $\alpha \in L$, then

$$
N_{L / K}(\alpha)=\left(N_{K(\alpha) / K}(\alpha)\right)^{[L: K(\alpha)]}
$$

Note that part (b) is a special case of what is known as the "transitivity of norm maps": if $K \hookrightarrow F \hookrightarrow L$ is a tower of field extensions, and $[L: K]<\infty$, then $N_{L / K}=N_{F / K} \circ N_{L / F}$.

Proof. To show (a), note that $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$ is a basis for $K(\alpha) / K$ as a K-vector space. So multiplication by α shifts all of the associated column vectors:

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right) \stackrel{(-) \cdot \alpha}{\longmapsto}\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \xrightarrow{(-) \cdot \alpha}\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \xrightarrow{(-) \cdot \alpha} \cdots \xrightarrow{(-) \cdot \alpha}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) \xrightarrow{(-) \cdot \alpha}\left(\begin{array}{c}
-a_{0} \\
-a_{1} \\
\vdots \\
-a_{n-1}
\end{array}\right)
$$

where $\left\{a_{0}, \ldots, a_{n-1}\right\}$ are the coefficients of $\mu_{\alpha, K}$. In this basis, the associated matrix of the K-linear map (-) α is given by

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
0 & 0 & \ddots & 0 & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right)
$$

and the determinant of this map is $(-1)^{n} a_{0}$.

