
MATH8510
Lecture 3 Notes

Charlie Conneen

August 29, 2022

Absolute Values (continued)

Recall. An ultrametric space is a metric space (X, d) such that the strong triangle inequality
holds; in other words, ∀x, y, z ∈ X,

d(x, z) ≤ max {d(x, y), d(y, z)}.

In this case, d is called an ultrametric.

Theorem (Consequences of the strong triangle inequality). Let (K, | ∙ |) be a non-Archimedean
field. The following are true:

1. (strong triangle equality) if x, y ∈ K and x 6= y, then |x + y| = max {|x| , |y|}.

2. The metric d : K × K → R≥0 given by d(x, y) = |x − y| is an ultrametric.

3. If x, y, z ∈ K satisfy d(x, y) < d(z, y), then d(x, y) = d(z, y).

4. If r > 0, x ∈ K, and y ∈ Br(x), then Br(y) = Br(x).

5. If Br(x) ∩ Bs(y) 6= ∅, then one of Br(x) ⊆ Bs(y) or Bs(y) ⊆ Br(x) holds.

6. Every circle Cr(y) = {x ∈ K | |y − x| = r} with y ∈ K and r > 0 is a clopen set in (K, | ∙ |).

7. all balls Br(x) are clopen (equivalently, Qp is totally disconnected).

Proof. For (1), suppose x, y ∈ K with |x| > |y| WLOG. Then

|x| = |x + y − y| ≤ max {|x + y| , |y|} ≤ max {max {|x| , |y|} , |y|} = |x|

and thus |x + y| = |x| = max {|x| , |y|}.
For (2), if x, y, z ∈ K, then checking the ultrametric inequality amounts to observing

|x − y| = |(x − z) + (z − y)| ≤ max {|x − z| , |x − y|}

which suffices. We can see immediately that (3) follows from (1) and (2).
For (4), let r > 0 and suppose y ∈ Br(x) for some x ∈ K. If z ∈ Br(y), then

|z − x| ≤ max {|z − y| , |y − x|} < r
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so z ∈ Br(x). This shows Br(y) ⊆ Br(x). The other containment follows symmetrically.
For (5), let x, y ∈ K and r ≥ s > 0. If Br(x) ∩ Bs(y) 6= ∅, then since there is some

z0 ∈ Br(x) ∩ Bs(y), Br(x) = Br(z0) ⊇ Bs(z0) = Bs(y), by (4).
For (6), let y ∈ K, r > 0, and x ∈ Cr(y). If z ∈ Br(x), then |z − x| < r = |x − y|, so

by (1), we can see that |z − y| = max {|z − x| , |x − y|} = |x − y| = r. So Br(x) ⊆ Cr(y).
So we have shown that every point in Cr(y) has an open neighbourhood contained therein,
hence Cr(y) is open. Hence K \ Cr(y) = Br(y) ∪

⋃
r′>r Cr′(y) is open, so Cr(y) is closed.

And finally, (7) follows from (6). �

Theorem. If | ∙ | and | ∙ |′ are absolute values on a field K, then the following are equivalent:

a. | ∙ | and | ∙ |′ generate the same topology on K;

b. For all x ∈ K, we have |x| < 1 if and only if |x|′ < 1.

c. There exists some α > 0 such that |x|α = |x|′ for all x ∈ K.

Definition. If | ∙ | and | ∙ |′ are two absolute values on a field K such that any of the conditions
from the above theorem hold, we say that | ∙ | and | ∙ |′ are equivalent, and write | ∙ | ∼ | ∙ |′.

Before we prove this theorem, we will need a preliminary lemma.

Lemma. Let K be a field with absolute value | ∙ |. Any x ∈ K satisfies |x| < 1 if and only if, for
every open U ⊆ K containing 0, U contains all but finitely many powers

{
x, x2, x3, . . .

}
.

Proof. Suppose |x| < 1. If U ⊆ K is an open neighbourhood of 0, then since |xn − 0| =
|x|n → 0 as n → ∞, there exists some N ∈ N such that xn ∈ U for all n ≥ N .

For the other direction, we prove the contrapositive. Suppose that |x| ≥ 1, so that
|xn − 0| = |x|n ≥ |x| ≥ 1. Then U := B1(0) contains none of the xn terms. �

With that out of the way, we can prove the theorem.

Proof of the Theorem. We first show (a) ⇒ (b). Suppose U is open in K1 := (K, | ∙ |) if and
only if it is open in K2 := (K, | ∙ |′). Then U is an open neighbourhood of 0 in K1 if and
only if it is an open neighbourhood of 0 in K2. Then by the above Lemma, we find that
|x| < 1 ⇐⇒ |x|′ < 1 for all x ∈ K.

Now we show (b) ⇒ (c). Suppose |x| < 1 ⇐⇒ |x|′ < 1 for all x ∈ K. If | ∙ | = | ∙ |0 (where
| ∙ |0 is the trivial absolute value x 7→ 0), then necessarily | ∙ |′ = | ∙ |0 as well. Otherwise, | ∙ | is
nontrivial, so there exists some x0 ∈ K such that |x0| > 1 (take some element with nonzero

norm, and either it or its inverse will have norm > 1). Then |x0|
′ > 1 as well. Let α := log|x0|

′

log|x0|

and note that α > 0 and |x0|
α = |x0|

′.
Now suppose x ∈ K satisfies |x| > 1 (and hence |x|′ > 1 as well). We will show |x|α = |x|′

by contradiction. Suppose |x|′ < |x|α. Then

log |x|′ < α log |x| = log |x| ∙
log |x0|

′

log |x0|

=⇒
log |x|′

log |x0|
′ <

log |x|
log |x0|

.
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Then by density of Q we have some m,n ∈ N such that

log |x|′

log |x0|
′ <

m

n
<

log |x|
log |x0|

=⇒ |xn|′ < |xm
0 |

′ and |xm
0 | < |xn|

So y = xn

xm
0

satisfies |y|′ < 1 and |y| > 1. This contradicts the assumption of (b). Therefore

|x|α = |x|′ for all x ∈ K.
As for (c) ⇒ (a), we can just write down open balls and compare. �
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