MATH8510 Lecture 3 Notes

Charlie Conneen

August 29, 2022

Absolute Values (continued)

Recall. An **ultrametric space** is a metric space (X, d) such that the strong triangle inequality holds; in other words, $\forall x, y, z \in X$,

$$d(x,z) \le \max\left\{d(x,y), d(y,z)\right\}.$$

In this case, d is called an **ultrametric**.

Theorem (Consequences of the strong triangle inequality). Let $(K, |\cdot|)$ be a non-Archimedean field. The following are true:

- 1. (strong triangle equality) if $x, y \in K$ and $x \neq y$, then $|x + y| = \max\{|x|, |y|\}$.
- 2. The metric $d: K \times K \to \mathbb{R}_{\geq 0}$ given by d(x, y) = |x y| is an ultrametric.
- 3. If $x, y, z \in K$ satisfy d(x, y) < d(z, y), then d(x, y) = d(z, y).
- 4. If r > 0, $x \in K$, and $y \in B_r(x)$, then $B_r(y) = B_r(x)$.
- 5. If $B_r(x) \cap B_s(y) \neq \emptyset$, then one of $B_r(x) \subseteq B_s(y)$ or $B_s(y) \subseteq B_r(x)$ holds.
- 6. Every circle $C_r(y) = \{x \in K \mid |y x| = r\}$ with $y \in K$ and r > 0 is a clopen set in $(K, |\cdot|)$.
- 7. <u>all</u> balls $B_r(x)$ are clopen (equivalently, \mathbb{Q}_p is totally disconnected).

Proof. For (1), suppose $x, y \in K$ with |x| > |y| WLOG. Then

$$x| = |x + y - y| \le \max\{|x + y|, |y|\} \le \max\{\max\{|x|, |y|\}, |y|\} = |x|$$

and thus $|x + y| = |x| = \max\{|x|, |y|\}.$

For (2), if $x, y, z \in K$, then checking the ultrametric inequality amounts to observing

$$|x - y| = |(x - z) + (z - y)| \le \max\{|x - z|, |x - y|\}$$

which suffices. We can see immediately that (3) follows from (1) and (2).

For (4), let r > 0 and suppose $y \in B_r(x)$ for some $x \in K$. If $z \in B_r(y)$, then

$$|z - x| \le \max\{|z - y|, |y - x|\} < r$$

so $z \in B_r(x)$. This shows $B_r(y) \subseteq B_r(x)$. The other containment follows symmetrically. For (5), let $x, y \in K$ and $r \ge s > 0$. If $B_r(x) \cap B_s(y) \ne \emptyset$, then since there is some $z_0 \in B_r(x) \cap B_s(y), B_r(x) = B_r(z_0) \supseteq B_s(z_0) = B_s(y)$, by (4).

For (6), let $y \in K, r > 0$, and $x \in C_r(y)$. If $z \in B_r(x)$, then |z - x| < r = |x - y|, so by (1), we can see that $|z - y| = \max\{|z - x|, |x - y|\} = |x - y| = r$. So $B_r(x) \subseteq C_r(y)$. So we have shown that every point in $C_r(y)$ has an open neighbourhood contained therein, hence $C_r(y)$ is open. Hence $K \setminus C_r(y) = B_r(y) \cup \bigcup_{r' > r} C_{r'}(y)$ is open, so $C_r(y)$ is closed.

And finally, (7) follows from (6).

Theorem. If $|\cdot|$ and $|\cdot|'$ are absolute values on a field K, then the following are equivalent:

- a. $|\cdot|$ and $|\cdot|'$ generate the same topology on K;
- b. For all $x \in K$, we have |x| < 1 if and only if |x|' < 1.
- c. There exists some $\alpha > 0$ such that $|x|^{\alpha} = |x|'$ for all $x \in K$.

Definition. If $|\cdot|$ and $|\cdot|'$ are two absolute values on a field K such that any of the conditions from the above theorem hold, we say that $|\cdot|$ and $|\cdot|'$ are **equivalent**, and write $|\cdot| \sim |\cdot|'$.

Before we prove this theorem, we will need a preliminary lemma.

Lemma. Let K be a field with absolute value $|\cdot|$. Any $x \in K$ satisfies |x| < 1 if and only if, for every open $U \subseteq K$ containing 0, U contains all but finitely many powers $\{x, x^2, x^3, \ldots\}$.

Proof. Suppose |x| < 1. If $U \subseteq K$ is an open neighbourhood of 0, then since $|x^n - 0| = |x|^n \to 0$ as $n \to \infty$, there exists some $N \in \mathbb{N}$ such that $x^n \in U$ for all $n \ge N$.

For the other direction, we prove the contrapositive. Suppose that $|x| \ge 1$, so that $|x^n - 0| = |x|^n \ge |x| \ge 1$. Then $U \coloneqq B_1(0)$ contains none of the x^n terms.

With that out of the way, we can prove the theorem.

Proof of the Theorem. We first show $(a) \Rightarrow (b)$. Suppose U is open in $K_1 := (K, |\cdot|)$ if and only if it is open in $K_2 := (K, |\cdot|')$. Then U is an open neighbourhood of 0 in K_1 if and only if it is an open neighbourhood of 0 in K_2 . Then by the above Lemma, we find that $|x| < 1 \iff |x|' < 1$ for all $x \in K$.

Now we show $(b) \Rightarrow (c)$. Suppose $|x| < 1 \iff |x|' < 1$ for all $x \in K$. If $|\cdot| = |\cdot|_0$ (where $|\cdot|_0$ is the trivial absolute value $x \mapsto 0$), then necessarily $|\cdot|' = |\cdot|_0$ as well. Otherwise, $|\cdot|$ is nontrivial, so there exists some $x_0 \in K$ such that $|x_0| > 1$ (take some element with nonzero norm, and either it or its inverse will have norm > 1). Then $|x_0|' > 1$ as well. Let $\alpha \coloneqq \frac{\log|x_0|'}{\log|x_0|}$ and note that $\alpha > 0$ and $|x_0|^{\alpha} = |x_0|'$.

Now suppose $x \in K$ satisfies |x| > 1 (and hence |x|' > 1 as well). We will show $|x|^{\alpha} = |x|'$ by contradiction. Suppose $|x|' < |x|^{\alpha}$. Then

$$\log |x|' < \alpha \log |x| = \log |x| \cdot \frac{\log |x_0|'}{\log |x_0|}$$
$$\implies \frac{\log |x|'}{\log |x_0|'} < \frac{\log |x|}{\log |x_0|}.$$

Then by density of \mathbb{Q} we have some $m, n \in \mathbb{N}$ such that

$$\frac{\log |x|'}{\log |x_0|'} < \frac{m}{n} < \frac{\log |x|}{\log |x_0|}$$

$$\implies |x^n|' < |x_0^m|' \text{ and } |x_0^m| < |x^n|$$

So $y = \frac{x^n}{x_0^m}$ satisfies |y|' < 1 and |y| > 1. This contradicts the assumption of (b). Therefore $|x|^{\alpha} = |x|'$ for all $x \in K$.

As for $(c) \Rightarrow (a)$, we can just write down open balls and compare.