MATH8510
 Lecture 4 Notes

Charlie Conneen

August 31, 2022

Absolute Values (continued)

Recall the following theorem from last lecture:
Theorem. If $|\cdot|$ and $|\cdot|^{\prime}$ are absolute values on a field K, then the following are equivalent:
a. $|\cdot|$ and $|\cdot|^{\prime}$ generate the same topology on K;
b. For all $x \in K$, we have $|x|<1$ if and only if $|x|^{\prime}<1$.
c. There exists some $\alpha>0$ such that $|x|^{\alpha}=|x|^{\prime}$ for all $x \in K$.

If any of these equivalent conditions hold, we say that $|\cdot|$ and $|\cdot|^{\prime}$ are equivalent, and write $|\cdot| \sim|\cdot|^{\prime}$. So by the theorem, they generate the same topology if and only if their open unit balls are the same, if and only if one of $|\cdot|,|\cdot|^{\prime}$ is a positive power of the other.

Archimedean Absolute Values on \mathbb{Q}.

Let $|\cdot|$ be an Archimedean absolute value on \mathbb{Q}. Recall that this means that the set

$$
S=\{n \in \mathbb{N}| | n \mid>1\}
$$

is unbounded, and in particular, S is infinite.
Proposition. Let $|\cdot|$ and S be as above. Then $\frac{\log |n|}{\log (n)}$ is independent of the choice of $n \in S$.
Proof. Fix $m, n \in S$ and let $\ell \in \mathbb{N}$. Then there exists a unique base m expansion

$$
n^{\ell}=a_{0}+a_{1} m+a_{2} m^{2}+\cdots+a_{k} m^{k}
$$

with $a_{i} \in\{0, \ldots, m-1\}$ for all i, and $a_{k} \neq 0$. In particular, $1 \leq m^{k} \leq n^{\ell}$, and thus

$$
0 \leq k \leq \ell \cdot \frac{\log |n|}{\log (n)}
$$

And therefore we obtain the following inequality:

$$
\begin{aligned}
|n|^{\ell}=\left|n^{\ell}\right|=\sum_{i=0}^{k}\left|a_{i}\right| \cdot|m|^{i} & \leq(k+1) \cdot m \cdot|m|^{k} \\
& \leq\left(\ell \cdot \frac{\log (n)}{\log (m)}+1\right) \cdot m \cdot\left(|m|^{\frac{\log (n)}{\log (m)}}\right)^{\ell} \\
\Longrightarrow|n| & \leq \sqrt[\ell]{\left(\ell \cdot \frac{\log (n)}{\log (m)}+1\right) \cdot m \cdot|m|^{\frac{\log (n)}{\log (m)}}}
\end{aligned}
$$

Since this holds for all $\ell \in \mathbb{N}$, taking $\ell \rightarrow \infty$ yields

$$
|n| \leq|m|^{\frac{\log (n)}{\log (m)}}
$$

And therefore $\frac{\log |n|}{\log (n)} \leq \frac{\log |m|}{\log (m)}$. By symmetry we can replace n and m with each other, so that this becomes an equality. Hence for all $n, m \in S$,

$$
\frac{\log |n|}{\log (n)}=\frac{\log |m|}{\log (m)}
$$

as required.
If $n \in S$, we will write $\alpha:=\frac{\log |n|}{\log (n)}$ to denote the constant, which is independent of the choice of $n \in S$ by the above proposition.

Proposition. Let α be as above. Then for all $m \in \mathbb{N}, \frac{\log |m|}{\log (m)}=\alpha$.
Proof. Suppose $m \in \mathbb{N}$. Since $|m|>0$ and S is unbounded, we can find some $n^{\prime} \in S$ such that $\left|n^{\prime}\right|>\frac{1}{|m|}$. This shows that $n^{\prime} m \in S$ as well.

$$
\begin{aligned}
\log |m|=\log \left|n^{\prime} m\right|-\log \left|n^{\prime}\right| & =\alpha \log \left(n^{\prime} m\right)-\alpha \log \left(n^{\prime}\right) \\
& =\alpha \log (m) .
\end{aligned}
$$

Therefore $\frac{\log |m|}{\log (m)}=\alpha$.
Corollary. $|m|=m^{\alpha}=|m|_{\infty}^{\alpha}$ for all $m \in \mathbb{N}$.
Corollary. $|x|=|x|_{\infty}^{\alpha}$ for all $x \in \mathbb{Q}$.
Proposition. If $\alpha>1$, then $|\cdot|:=|\cdot|_{\infty}^{\alpha}$ is not an absolute value.
Proof. Consider $|1+1|=2^{\alpha}>2=1+1=|1|+|1|$.
Theorem. The set of all Archimedean absolute values on \mathbb{Q} is precisely

$$
\left\{|\cdot|_{\infty}^{\alpha} \mid \alpha \in(0,1]\right\} .
$$

Proof. Immediate consequence of the above statements.

Non-Archimedean Absolute Values on \mathbb{Q}.

Let $|\cdot|$ be a non-Archimedean absolute value on \mathbb{Q}. There is not much to say in the case that $|\cdot|=|\cdot|_{0}$, so we suppose that $|\cdot| \neq|\cdot|_{0}$ for the time being.

Since $|n| \leq 1$ for all $n \in \mathbb{N}$, there exists a least $n \in \mathbb{N}$ such that $|n|<1$. Call this number p, and let $\alpha=-\frac{\log |p|}{\log (p)}$. Note that α is positive, since $\log (p)$ is positive, and $\log |p|$ is negative since $|p|<1$.

Proposition. Let $|\cdot|, p$, and α be as above. Then p is a prime, and $|n|=|n|_{p}^{\alpha}$ for all $n \in \mathbb{N}$.
Proof. Let $a, b \in \mathbb{N}$ such that $a b=p$. Then $1 \leq a, b \leq p$, and

$$
|a| \cdot|b|=|p|<1,
$$

so one of $|a|<1$ or $|b|<1$ must hold. By minimality of p, one of $a=p$ or $b=p$ must hold. This shows that p is prime.

Now suppose $n \in \mathbb{N}$, and write

$$
n=q \cdot p+r
$$

with $q \geq 0$ and $0 \leq r<p-1$, by the division algorithm.
i. Suppose $p \nmid n$. Note that $0 \leq r<p-1 \Longrightarrow r<p$, so either $|r|=0$ or $|r|=1$. Since $p \nmid n$, it must be that $r \neq 0$, so $|r|=1$. Furthermore, we have that $|q p|=|q| \cdot|p|<$ $1=|r|$, so by the strong triangle inequality, we know that

$$
|n|=|q p+r|=|r|=1=|n|_{p}^{\alpha} .
$$

ii. Otherwise, suppose $p \mid n$. Then we may write

$$
n=p^{\operatorname{ord}_{p}(n)} \cdot n^{\prime}
$$

where $p \nmid n^{\prime}$, so by applying (i) to n^{\prime}, we have

$$
|n|=|p|^{\operatorname{ord}_{p}(n)} \cdot\left|n^{\prime}\right|=|p|^{-\alpha \operatorname{ord}_{p}(n)}=|n|_{p}^{\alpha} .
$$

So our casework shows the claim.
Corollary. Every non-trivial non-Archimedean absolute value on \mathbb{Q} is equivalent to a p-adic absolute value.

Corollary. If $|\cdot|, p$, and α are as above, then $|x|=|x|_{p}^{\alpha}$ for all $x \in \mathbb{Q}$.
Remark. Fix a prime p. If p^{\prime} is a different prime, then $x=\frac{p^{\prime}}{p}$ satisfies $|x|_{p}>1$ and $|x|_{p^{\prime}}<1$, so consequently $|\cdot|_{p^{\prime}} \nsim|\cdot|_{p}$. In other words, no two different primes will give similar absolute values. One can also check that $|\cdot|_{p}^{\alpha}$ is a non-Archimedean absolute value.

Corollary (Ostrowski's Theorem (1916)). Every absolute value on \mathbb{Q} is equivalent to precisely one of the following absolute values:

$$
|\cdot|_{0},|\cdot|_{2},|\cdot|_{3},|\cdot|_{5},|\cdot|_{7}, \ldots,|\cdot|_{\infty}
$$

