MATH8510 Lecture 4 Notes

Charlie Conneen

August 31, 2022

Absolute Values (continued)

Recall the following theorem from last lecture:

Theorem. If $|\cdot|$ and $|\cdot|'$ are absolute values on a field K, then the following are equivalent:

- a. $|\cdot|$ and $|\cdot|'$ generate the same topology on K;
- b. For all $x \in K$, we have |x| < 1 if and only if |x|' < 1.
- c. There exists some $\alpha > 0$ such that $|x|^{\alpha} = |x|'$ for all $x \in K$.

If any of these equivalent conditions hold, we say that $|\cdot|$ and $|\cdot|'$ are **equivalent**, and write $|\cdot| \sim |\cdot|'$. So by the theorem, they generate the same topology if and only if their open unit balls are the same, if and only if one of $|\cdot|, |\cdot|'$ is a positive power of the other.

Archimedean Absolute Values on \mathbb{Q} .

Let $|\cdot|$ be an Archimedean absolute value on \mathbb{Q} . Recall that this means that the set

$$S = \{n \in \mathbb{N} \mid |n| > 1\}$$

is unbounded, and in particular, S is infinite.

Proposition. Let $|\cdot|$ and S be as above. Then $\frac{\log|n|}{\log(n)}$ is independent of the choice of $n \in S$.

Proof. Fix $m, n \in S$ and let $\ell \in \mathbb{N}$. Then there exists a unique base m expansion

$$n^{\ell} = a_0 + a_1m + a_2m^2 + \dots + a_km^k$$

with $a_i \in \{0, \ldots, m-1\}$ for all i, and $a_k \neq 0$. In particular, $1 \leq m^k \leq n^\ell$, and thus

$$0 \le k \le \ell \cdot \frac{\log |n|}{\log(n)}$$

And therefore we obtain the following inequality:

$$|n|^{\ell} = |n^{\ell}| = \sum_{i=0}^{k} |a_i| \cdot |m|^i \le (k+1) \cdot m \cdot |m|^k$$
$$\le \left(\ell \cdot \frac{\log(n)}{\log(m)} + 1\right) \cdot m \cdot \left(|m|^{\frac{\log(n)}{\log(m)}}\right)^{\ell}$$
$$\implies |n| \le \sqrt[\ell]{\left(\ell \cdot \frac{\log(n)}{\log(m)} + 1\right) \cdot m} \cdot |m|^{\frac{\log(n)}{\log(m)}}$$

Since this holds for all $\ell \in \mathbb{N}$, taking $\ell \to \infty$ yields

$$|n| \le |m|^{\frac{\log(n)}{\log(m)}}$$

And therefore $\frac{\log|n|}{\log(n)} \leq \frac{\log|m|}{\log(m)}$. By symmetry we can replace n and m with each other, so that this becomes an equality. Hence for all $n, m \in S$,

$$\frac{\log|n|}{\log(n)} = \frac{\log|m|}{\log(m)}$$

as required.

If $n \in S$, we will write $\alpha \coloneqq \frac{\log |n|}{\log(n)}$ to denote the constant, which is independent of the choice of $n \in S$ by the above proposition.

Proposition. Let α be as above. Then for all $m \in \mathbb{N}$, $\frac{\log |m|}{\log(m)} = \alpha$.

Proof. Suppose $m \in \mathbb{N}$. Since |m| > 0 and S is unbounded, we can find some $n' \in S$ such that $|n'| > \frac{1}{|m|}$. This shows that $n'm \in S$ as well.

$$\log |m| = \log |n'm| - \log |n'| = \alpha \log (n'm) - \alpha \log(n')$$
$$= \alpha \log(m).$$

Therefore $\frac{\log|m|}{\log(m)} = \alpha$.

Corollary. $|m| = m^{\alpha} = |m|_{\infty}^{\alpha}$ for all $m \in \mathbb{N}$.

Corollary. $|x| = |x|_{\infty}^{\alpha}$ for all $x \in \mathbb{Q}$.

Proposition. If $\alpha > 1$, then $|\cdot| := |\cdot|_{\infty}^{\alpha}$ is not an absolute value.

Proof. Consider $|1 + 1| = 2^{\alpha} > 2 = 1 + 1 = |1| + |1|$.

Theorem. The set of all Archimedean absolute values on \mathbb{Q} is precisely

```
\{|\cdot|_{\infty}^{\alpha} \mid \alpha \in (0,1]\}.
```

Proof. Immediate consequence of the above statements.

Non-Archimedean Absolute Values on \mathbb{Q} .

Let $|\cdot|$ be a non-Archimedean absolute value on \mathbb{Q} . There is not much to say in the case that $|\cdot| = |\cdot|_0$, so we suppose that $|\cdot| \neq |\cdot|_0$ for the time being.

Since $|n| \leq 1$ for all $n \in \mathbb{N}$, there exists a least $n \in \mathbb{N}$ such that |n| < 1. Call this number p, and let $\alpha = -\frac{\log|p|}{\log(p)}$. Note that α is positive, since $\log(p)$ is positive, and $\log |p|$ is negative since |p| < 1.

Proposition. Let $|\cdot|$, p, and α be as above. Then p is a prime, and $|n| = |n|_n^{\alpha}$ for all $n \in \mathbb{N}$.

Proof. Let $a, b \in \mathbb{N}$ such that ab = p. Then $1 \leq a, b \leq p$, and

$$|a| \cdot |b| = |p| < 1,$$

so one of |a| < 1 or |b| < 1 must hold. By minimality of p, one of a = p or b = p must hold. This shows that p is prime.

Now suppose $n \in \mathbb{N}$, and write

$$n = q \cdot p + r$$

with $q \ge 0$ and $0 \le r , by the division algorithm.$

i. Suppose $p \nmid n$. Note that $0 \leq r , so either <math>|r| = 0$ or |r| = 1. Since $p \nmid n$, it must be that $r \neq 0$, so |r| = 1. Furthermore, we have that $|qp| = |q| \cdot |p| < 1 = |r|$, so by the strong triangle inequality, we know that

$$|n| = |qp + r| = |r| = 1 = |n|_p^{\alpha}$$
.

ii. Otherwise, suppose $p \mid n$. Then we may write

$$n = p^{\operatorname{ord}_p(n)} \cdot n'$$

where $p \nmid n'$, so by applying (i) to n', we have

$$|n| = |p|^{\operatorname{ord}_p(n)} \cdot |n'| = |p|^{-\alpha \operatorname{ord}_p(n)} = |n|_p^{\alpha}.$$

So our casework shows the claim.

Corollary. Every non-trivial non-Archimedean absolute value on \mathbb{Q} is equivalent to a p-adic absolute value.

Corollary. If $|\cdot|$, p, and α are as above, then $|x| = |x|_p^{\alpha}$ for all $x \in \mathbb{Q}$.

Remark. Fix a prime p. If p' is a different prime, then $x = \frac{p'}{p}$ satisfies $|x|_p > 1$ and $|x|_{p'} < 1$, so consequently $|\cdot|_{p'} \not\sim |\cdot|_p$. In other words, no two different primes will give similar absolute values. One can also check that $|\cdot|_p^{\alpha}$ is a non-Archimedean absolute value.

Corollary (Ostrowski's Theorem (1916)). Every absolute value on \mathbb{Q} is equivalent to precisely one of the following absolute values:

$$\left|\cdot\right|_{0}, \left|\cdot\right|_{2}, \left|\cdot\right|_{3}, \left|\cdot\right|_{5}, \left|\cdot\right|_{7}, \ldots, \left|\cdot\right|_{\infty}$$