MATH8510 Lecture 5 Notes

Charlie Conneen

September 2, 2022

Completions

Definition. Let K be a field, $|\cdot|$ an absolute value on K. A completion of $(K, |\cdot|)$ is a field \widehat{K} with an absolute value $\|\cdot\|$ along with the following data:

- i. A field embedding $\iota: K \hookrightarrow \widehat{K}$ such that $\iota(K)$ is dense in $(\widehat{K}, \|\cdot\|)$;
- ii. $\|\cdot\|$ extends $|\cdot|$, i.e. for all $x \in K$, $|x| = \|\iota(x)\|$.
- iii. $(\widehat{K}, \|\cdot\|)$ is complete.

Theorem. Given any field K with an absolute value $|\cdot|$, there exists a completion $(\widehat{K}, ||\cdot||)$ which is unique up to (unique) isometric isomorphism.

Proof. From a homework exercise, we know that the set C of Cauchy sequences in $(K, |\cdot|)$ is a ring with maximal ideal \mathfrak{m} given by

$$\mathfrak{m} \coloneqq \{ (x_n)_n \in \mathcal{C} \mid |x_n| \to 0 \}.$$

We define $\widehat{K} \coloneqq \mathcal{C}/\mathfrak{m}$, which is a field since \mathfrak{m} is a maximal ideal. To check the additional data, let $\iota : K \hookrightarrow \widehat{K}$ be given by $x \mapsto (x)_n + \mathfrak{m}$, i.e. every element of K is sent to the equivalence class of the corresponding constant sequence. This is indeed a field homomorphism, and is evidently injective.

To define $\|\cdot\|: \widehat{K} \to \mathbb{R}_{\geq 0}$, we let

$$\|(x_n)_n + \mathfrak{m}\| \coloneqq \lim_{n \to \infty} |x_n|.$$

This is well-defined, since it is independent of the choice of representative sequence (easy). To see that this is an absolute value:

1. For any $\overline{x} = (x_n)_n + \mathfrak{m}$ and any $\overline{y} = (y_n)_n + \mathfrak{m}$,

$$\overline{x} \cdot \overline{y} = (x_n \cdot y_n)_n + \mathfrak{m}$$
$$\implies \|\overline{x} \cdot \overline{y}\| = \|x\| \cdot \|y\|.$$

2. Similarly, we have

$$\|\overline{x} + \overline{y}\| \le \|\overline{x}\| + \|\overline{y}\|$$

in general, and

$$\|\overline{x} + \overline{y}\| \le \max\{\|\overline{x}\|, \|\overline{y}\|\}$$

if $(K, |\cdot|)$ is non-Archimedean.

We also know that $\|\iota(x)\| = |x|$ for all $x \in K$, because

$$\|\iota(x)\| = \|(x)_n + \mathfrak{m}\| = \lim_{n \to \infty} |x| = |x|.$$

We omit the proof of density of $\iota(K)$, as well as the proof of completeness of $(\widehat{K}, \|\cdot\|)$. To show that $(\widehat{K}, \|\cdot\|)$ is unique, if we have any other completion $(\widehat{K}', \|\cdot\|')$ equipped with an isometric embedding $\iota' : K \hookrightarrow \widehat{K}'$, then

$$\sigma \coloneqq \iota' \circ \iota^{-1} : \iota(K) \to \iota'(K)$$

is an isometric isomorphism. Then we use density and continuity to extend σ to an isometric isomorphism.

Remark. As it turns out, $\|\cdot\|$ is non-Archimedean if and only if $|\cdot|$ is non-Archimedean. In this case, $\|\widehat{K}^{\times}\| = |K^{\times}|$, or in other words, the value group does not grow larger under a non-Archimedean completion.

From now on, we refer to \widehat{K} as the completion of $(K, |\cdot|)$, and we identify K with $\iota(K)$, and replace $\|\cdot\|$ with $|\cdot|$.

Definition. Fix a prime p. The field of p-adic numbers, written \mathbb{Q}_p , is the completion of $(\mathbb{Q}, |\cdot|_p)$.

This is unsatisfying: we have convinced ourselves that this object exists, and is unique up to isometric isomorphism, but this definition doesn't describe the *p*-adics any further than that. Furthermore, we are still left with the task of understanding how completions behave with respect to *equivalent* absolute values.

Absolute Values and Completions.

Let $|\cdot| \sim |\cdot|'$ be equivalent absolute values on a field K. If \mathcal{C} and \mathcal{C}' are the equivalence classes of Cauchy sequences in their respective absolute values, then we can quickly see that $\mathcal{C} = \mathcal{C}'$, and furthermore, their maximal ideals $\mathfrak{m} = \mathfrak{m}'$ agree. So $\mathcal{C}/\mathfrak{m} = \mathcal{C}'/\mathfrak{m}'$ as rings, and they have the same topology, since $|\cdot| \sim |\cdot|'$.

Theorem (Ostrowski's theorem, "completions" version). The full list of distinct completions of \mathbb{Q} is

$$\mathbb{Q} = \mathbb{Q}_0, \mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \dots, \mathbb{Q}_\infty = \mathbb{R}.$$

Valuations

Definition. Let K be a field. A valuation on K is a function $v : K \to \mathbb{R} \cup \{\infty\}$ satisfying the following criteria:

- i. $v(x) = \infty$ if and only if x = 0;
- ii. v(xy) = v(x) + v(y) for all $x, y \in K$.
- iii. $v(x+y) \ge \min \{v(x), v(y)\}$ for all $x, y \in K$.

Example. On \mathbb{Q} , ord_p is a valuation.

Proposition. Given a valuation $v: K \to \mathbb{R} \cup \{\infty\}$, there exists a corresponding non-Archimedean absolute value on K, given by

$$|\cdot| \coloneqq e^{-v(\cdot)}.$$

Remark. We will see in the future that ord_p being a *discrete* valuation (in fact $\operatorname{ord}_p(\mathbb{Q}^{\times}) = \mathbb{Z}$) will be very useful.