MATH8510 Lecture 6 Notes

Charlie Conneen

September 5, 2022

Basic Properties of \mathbb{Q}_p

For this lecture, fix a prime p. Recall that $(\mathbb{Q}_p, |\cdot|_p)$ is a complete non-Archimedean field with \mathbb{Q} a dense subfield such that

$$\left|\mathbb{Q}^{\times}\right|_{p} = \left|\mathbb{Q}_{p}^{\times}\right|_{p} = p^{\mathbb{Z}}.$$

Definition. The *p*-adic valuation $\operatorname{ord}_p : \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$ is given by

$$\operatorname{ord}_p(x) \coloneqq -\log_p |x|_p$$

for all $x \in \mathbb{Q}_p$.

Definition. The ring of *p*-adic integers is the closed unit ball

$$\mathbb{Z}_p \coloneqq \left\{ x \in \mathcal{Q}_p \mid |x|_p \le 1 \right\}$$

in \mathbb{Q}_p .

Note that ord_p is a *normalized* discrete valuation, i.e. $\operatorname{ord}_p : \mathbb{Q}_p^{\times} \to \mathbb{Z}$ is a surjective homomorphism. Since we can always restrict the codomain of a valuation to its image, this will not be a problem.

Remark. Observe that

$$p\mathbb{Z}_{p} = \left\{ px \in \mathbb{Q}_{p} \mid |x|_{p} \leq 1 \right\} = \left\{ y \in \mathbb{Q}_{p} \mid |p^{-1}y|_{p} \leq 1 \right\}$$
$$= \left\{ y \in \mathbb{Q}_{p} \mid |y|_{p} \leq p^{-1} \right\} = \left\{ x \in \mathbb{Q}_{p} \mid |y|_{p} < 1 \right\}$$

and that this is the unique maximal ideal in \mathbb{Z}_p . Consequently,

$$\mathbb{Z}_p^{\times} = \mathbb{Z}_p \setminus p\mathbb{Z}_p = \left\{ x \in \mathbb{Q}_p \mid |x|_p = 1 \right\} = \{ x \in \mathbb{Q}_p \mid \operatorname{ord}_p(x) = 0 \}.$$

Remark. The localization of \mathbb{Z} at the prime (p) can be regarded as a subring of the *p*-adic integers:

$$\mathbb{Z}_{(p)} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z} \setminus p\mathbb{Z} \right\} = \left\{ x \in \mathbb{Q} \mid \operatorname{ord}_p(x) \ge 0 \right\} = \mathbb{Q} \cap \mathbb{Z}_p.$$

We can also quickly see that

$$p^n \mathbb{Z}_p = \{ x \in \mathbb{Q}_p \mid \operatorname{ord}_p(x) \ge n \}$$

and thus $p^n \mathbb{Z}_{(p)} = \mathbb{Q} \cap p^n \mathbb{Z}_p$ for all $n \in \mathbb{N}$.

Theorem. The following are true:

- a. The open balls in \mathbb{Q}_p are precisely the sets of the form $c + p^n \mathbb{Z}_p$ with $c \in \mathbb{Q}_p$ and $n \in \mathbb{Z}$;
- b. The proper nonzero ideals in \mathbb{Z}_p are precisely the balls $p\mathbb{Z}_p, p^2\mathbb{Z}_p, p^3\mathbb{Z}_p, \ldots$
- c. \mathbb{Z} is a dense subring of \mathbb{Z}_p . Furthermore, \mathbb{N} is dense in \mathbb{Z}_p .

Proof. For (a), given $c \in \mathbb{Q}_p$ and r > 0, pick the least $n \in \mathbb{Z}$ such that $p^{-n} < r$. Then

$$B_{r}(c) = \left\{ x \in \mathbb{Q}_{p} \mid |x - c|_{p} < r \right\} = \left\{ x \in \mathbb{Q}_{p} \mid |x - c|_{p} \le p^{-n} \right\} \\ = \left\{ c + y \in \mathbb{Q}_{p} \mid |y|_{p} \le p^{-n} \right\} = c + p^{n} \mathbb{Z}_{p}.$$

This suffices. For (b), given a proper nonzero ideal $I \subseteq \mathbb{Z}_p$, we can see that

$$\infty \subsetneq \operatorname{ord}_p(I) \subset \mathbb{N} \cup \{\infty\}$$

and so $n = \min(\operatorname{ord}_p(I))$ exists in \mathbb{N} , and there exists some $x_0 \in I$ such that $\operatorname{ord}_p(x_0) = n$. Therefore $x_0\mathbb{Z}_p \subseteq I \subseteq p^n\mathbb{Z}_p$. Now since $x_0^{-1}p^n \in \mathbb{Z}_p^{\times}$, we have that

$$x_0\mathbb{Z}_p = x_0\left(x_0^{-1}p^n\mathbb{Z}_p\right) = p^n\mathbb{Z}_p,$$

hence $I = p^n \mathbb{Z}_p$.

For (c), suppose $U = c + p^n \mathbb{Z}_p$ is an open ball in \mathbb{Z}_p . Then $c \in \mathbb{Z}_p$ and $n \ge 0$. We are tasked with finding some $m \in \mathbb{N}$ such that $m \in U$.

If c = 0 or if n = 0, then $m = p^n$ works. So assume n > 0. Now by density of \mathbb{Q} in $(\mathbb{Q}_p, |\cdot|_p)$, there exists a (reduced) rational number $\frac{a}{b} \in U$. Then

$$\left|\frac{a}{b} - c\right|_p \le p^{-n}$$
 and $\left|\frac{a}{b}\right|_p \le 1$,

So we obtain gcd $(p^n, b) = 1$, and there exists some $k \in \mathbb{Z}$ and $m \in \mathbb{N}$ such that

$$kp^n + mb = a$$

and therefore

$$\left|m - \frac{a}{b}\right|_p = \left|\frac{-kp^n}{b}\right|_p \le p^{-n}$$

From here, the strong triangle inequality implies

$$m - c|_p \le p^{-n}.$$

Therefore $m \in c + p^n \mathbb{Z}_p$. This suffices.

$$\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Z}_{(p)} \subsetneq \mathbb{Z}_p$$
"is dense in"

Theorem. For $n \in \mathbb{N}$, there is an isomorphism of rings

$$\mathbb{Z}_p/p^n\mathbb{Z}_p\cong\mathbb{Z}/p^n\mathbb{Z}.$$

In particular, $\{0, 1, \ldots, p^n - 1\}$ is a complete set of representatives for the cosets of $p^n \mathbb{Z}_p \subseteq \mathbb{Z}_p$.

Proof. Fix $n \in \mathbb{N}$ and define $\varphi : \mathbb{Z} \to \mathbb{Z}_p/p^n \mathbb{Z}_p$ given by

$$\varphi(x) \coloneqq x + p^n \mathbb{Z}_p$$

One can quickly verify that this is indeed a ring homomorphism. Suppose $c + p^n \mathbb{Z}_p \in \mathbb{Z}_p/p^n \mathbb{Z}_p$. By density of $\mathbb{Z} \subseteq \mathbb{Z}_p$, there exists some $m \in \mathbb{Z}$ such that $m \in c + p^n \mathbb{Z}_p$. Then $\varphi(m) = m + p^n \mathbb{Z}_p = c + p^n \mathbb{Z}_p$, so φ is surjective. Furthermore,

$$\varphi(x) = p^n \mathbb{Z}_p \iff x \in \mathbb{Z} \cap p^n \mathbb{Z}_p = p^n \mathbb{Z}_p,$$

so ker $(\varphi) = p^n \mathbb{Z}$. So the first isomorphism theorem concludes the proof.

Corollary. The residue field of \mathbb{Q}_p is $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$.

Theorem. Every $x \in \mathbb{Z}_p$ has a unique series representation

$$x = \sum_{n=0}^{\infty} d_n p^n$$

where $d_n \in \{0, 1, \dots, p-1\}$ for all $n \in \mathbb{N}$.

Proof. Fix $x \in \mathbb{Z}_p$. Now let $y_0 = x$ and let d_0 be the unique element of $\{0, 1, \ldots, p-1\}$ such that $y_0 \in d_0 + p\mathbb{Z}_p$. We inductively construct the sequences $(d_n)_n$ and $(y_n)_n$ as follows: for $n+1 \in \mathbb{N}$, define

$$y_{n+1} = p^{-1} (y_{n-1} - d_{n-1}) \in \mathbb{Z}_p,$$

and let d_{n+1} be the unique element of $\{0, 1, \ldots, p-1\}$ such that $y_n \in d_n + p\mathbb{Z}_p$. Doing this for all $n \in \mathbb{N}$, we find that

$$x - \sum_{n=0}^{k-1} d_n p^n = x - \sum_{n=0}^{k-1} \left(p^n y_n - p^{n+1} y_{n+1} \right) = x - \left(y_0 - p^k y_k \right) = p^k y_k,$$

therefore $\left|x - \sum_{n=0}^{k-1} d_n p^n\right|_p \leq p^{-k}$ for all k. So $x = \lim_{n \to \infty} \sum_{n=0}^{k-1} d_n p^n = \sum_{n=0}^{\infty} d_n p^n$, as required.

Corollary. Every $x \in \mathbb{Q}_p^{\times}$ has a unique series expansion $x = \sum_{n=v}^{\infty} d_n p^n$ with $d_n \in \{0, 1, \dots, p-1\}$ for all $n \in \mathbb{N}$, and $d_v \neq 0$. In this case $\operatorname{ord}_p(x) = v$.