# MATH8510 <br> Lecture 6 Notes 

Charlie Conneen

September 5, 2022

## Basic Properties of $\mathbb{Q}_{p}$

For this lecture, fix a prime $p$. Recall that $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$ is a complete non-Archimedean field with $\mathbb{Q}$ a dense subfield such that

$$
\left|\mathbb{Q}^{\times}\right|_{p}=\left|\mathbb{Q}_{p}^{\times}\right|_{p}=p^{\mathbb{Z}} .
$$

Definition. The $p$-adic valuation $\operatorname{ord}_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{Z} \cup\{\infty\}$ is given by

$$
\operatorname{ord}_{p}(x):=-\log _{p}|x|_{p}
$$

for all $x \in \mathbb{Q}_{p}$.
Definition. The ring of $p$-adic integers is the closed unit ball

$$
\mathbb{Z}_{p}:=\left\{\left.x \in \mathcal{Q}_{p}| | x\right|_{p} \leq 1\right\}
$$

in $\mathbb{Q}_{p}$.
Note that $\operatorname{ord}_{p}$ is a normalized discrete valuation, i.e. $\operatorname{ord}_{p}: \mathbb{Q}_{p}^{\times} \rightarrow \mathbb{Z}$ is a surjective homomorphism. Since we can always restrict the codomain of a valuation to its image, this will not be a problem.

Remark. Observe that

$$
\begin{aligned}
p \mathbb{Z}_{p} & =\left\{\left.p x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\}=\left\{\left.y \in \mathbb{Q}_{p}| | p^{-1} y\right|_{p} \leq 1\right\} \\
& =\left\{\left.y \in \mathbb{Q}_{p}| | y\right|_{p} \leq p^{-1}\right\}=\left\{\left.x \in \mathbb{Q}_{p}| | y\right|_{p}<1\right\}
\end{aligned}
$$

and that this is the unique maximal ideal in $\mathbb{Z}_{p}$. Consequently,

$$
\mathbb{Z}_{p}^{\times}=\mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p}=1\right\}=\left\{x \in \mathbb{Q}_{p} \mid \operatorname{ord}_{p}(x)=0\right\} .
$$

Remark. The localization of $\mathbb{Z}$ at the prime $(p)$ can be regarded as a subring of the $p$-adic integers:

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{a}{b} \right\rvert\, a \in \mathbb{Z}, b \in \mathbb{Z} \backslash p \mathbb{Z}\right\}=\left\{x \in \mathbb{Q} \mid \operatorname{ord}_{p}(x) \geq 0\right\}=\mathbb{Q} \cap \mathbb{Z}_{p}
$$

We can also quickly see that

$$
p^{n} \mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p} \mid \operatorname{ord}_{p}(x) \geq n\right\}
$$

and thus $p^{n} \mathbb{Z}_{(p)}=\mathbb{Q} \cap p^{n} \mathbb{Z}_{p}$ for all $n \in \mathbb{N}$.
Theorem. The following are true:
a. The open balls in $\mathbb{Q}_{p}$ are precisely the sets of the form $c+p^{n} \mathbb{Z}_{p}$ with $c \in \mathbb{Q}_{p}$ and $n \in \mathbb{Z}$;
b. The proper nonzero ideals in $\mathbb{Z}_{p}$ are precisely the balls $p \mathbb{Z}_{p}, p^{2} \mathbb{Z}_{p}, p^{3} \mathbb{Z}_{p}, \ldots$
c. $\mathbb{Z}$ is a dense subring of $\mathbb{Z}_{p}$. Furthermore, $\mathbb{N}$ is dense in $\mathbb{Z}_{p}$.

Proof. For (a), given $c \in \mathbb{Q}_{p}$ and $r>0$, pick the least $n \in \mathbb{Z}$ such that $p^{-n}<r$. Then

$$
\begin{aligned}
B_{r}(c) & =\left\{x \in \mathbb{Q}_{p}| | x-\left.c\right|_{p}<r\right\}=\left\{x \in \mathbb{Q}_{p}| | x-\left.c\right|_{p} \leq p^{-n}\right\} \\
& =\left\{c+\left.y \in \mathbb{Q}_{p}| | y\right|_{p} \leq p^{-n}\right\}=c+p^{n} \mathbb{Z}_{p}
\end{aligned}
$$

This suffices. For (b), given a proper nonzero ideal $I \subseteq \mathbb{Z}_{p}$, we can see that

$$
\infty \subsetneq \operatorname{ord}_{p}(I) \subset \mathbb{N} \cup\{\infty\}
$$

and so $n=\min \left(\operatorname{ord}_{p}(I)\right)$ exists in $\mathbb{N}$, and there exists some $x_{0} \in I$ such that $\operatorname{ord}_{p}\left(x_{0}\right)=n$. Therefore $x_{0} \mathbb{Z}_{p} \subseteq I \subseteq p^{n} \mathbb{Z}_{p}$. Now since $x_{0}^{-1} p^{n} \in \mathbb{Z}_{p}^{\times}$, we have that

$$
x_{0} \mathbb{Z}_{p}=x_{0}\left(x_{0}^{-1} p^{n} \mathbb{Z}_{p}\right)=p^{n} \mathbb{Z}_{p}
$$

hence $I=p^{n} \mathbb{Z}_{p}$.
For (c), suppose $U=c+p^{n} \mathbb{Z}_{p}$ is an open ball in $\mathbb{Z}_{p}$. Then $c \in \mathbb{Z}_{p}$ and $n \geq 0$. We are tasked with finding some $m \in \mathbb{N}$ such that $m \in U$.

If $c=0$ or if $n=0$, then $m=p^{n}$ works. So assume $n>0$. Now by density of $\mathbb{Q}$ in $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$, there exists a (reduced) rational number $\frac{a}{b} \in U$. Then

$$
\left|\frac{a}{b}-c\right|_{p} \leq p^{-n} \quad \text { and } \quad\left|\frac{a}{b}\right|_{p} \leq 1
$$

So we obtain $\operatorname{gcd}\left(p^{n}, b\right)=1$, and there exists some $k \in \mathbb{Z}$ and $m \in \mathbb{N}$ such that

$$
k p^{n}+m b=a
$$

and therefore

$$
\left|m-\frac{a}{b}\right|_{p}=\left|\frac{-k p^{n}}{b}\right|_{p} \leq p^{-n}
$$

From here, the strong triangle inequality implies

$$
|m-c|_{p} \leq p^{-n}
$$

Therefore $m \in c+p^{n} \mathbb{Z}_{p}$. This suffices.


Theorem. For $n \in \mathbb{N}$, there is an isomorphism of rings

$$
\mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p} \cong \mathbb{Z} / p^{n} \mathbb{Z}
$$

In particular, $\left\{0,1, \ldots, p^{n}-1\right\}$ is a complete set of representatives for the cosets of $p^{n} \mathbb{Z}_{p} \subseteq \mathbb{Z}_{p}$.
Proof. Fix $n \in \mathbb{N}$ and define $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}$ given by

$$
\varphi(x):=x+p^{n} \mathbb{Z}_{p} .
$$

One can quickly verify that this is indeed a ring homomorphism. Suppose $c+p^{n} \mathbb{Z}_{p} \in$ $\mathbb{Z}_{p} / p^{n} \mathbb{Z}_{p}$. By density of $\mathbb{Z} \subseteq \mathbb{Z}_{p}$, there exists some $m \in \mathbb{Z}$ such that $m \in c+p^{n} \mathbb{Z}_{p}$. Then $\varphi(m)=m+p^{n} \mathbb{Z}_{p}=c+p^{n} \mathbb{Z}_{p}$, so $\varphi$ is surjective. Furthermore,

$$
\varphi(x)=p^{n} \mathbb{Z}_{p} \Longleftrightarrow x \in \mathbb{Z} \cap p^{n} \mathbb{Z}_{p}=p^{n} \mathbb{Z}_{p}
$$

so $\operatorname{ker}(\varphi)=p^{n} \mathbb{Z}$. So the first isomorphism theorem concludes the proof.
Corollary. The residue field of $\mathbb{Q}_{p}$ is $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$.
Theorem. Every $x \in \mathbb{Z}_{p}$ has a unique series representation

$$
x=\sum_{n=0}^{\infty} d_{n} p^{n}
$$

where $d_{n} \in\{0,1, \ldots, p-1\}$ for all $n \in \mathbb{N}$.
Proof. Fix $x \in \mathbb{Z}_{p}$. Now let $y_{0}=x$ and let $d_{0}$ be the unique element of $\{0,1, \ldots, p-1\}$ such that $y_{0} \in d_{0}+p \mathbb{Z}_{p}$. We inductively construct the sequences $\left(d_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ as follows: for $n+1 \in \mathbb{N}$, define

$$
y_{n+1}=p^{-1}\left(y_{n-1}-d_{n-1}\right) \in \mathbb{Z}_{p}
$$

and let $d_{n+1}$ be the unique element of $\{0,1, \ldots, p-1\}$ such that $y_{n} \in d_{n}+p \mathbb{Z}_{p}$. Doing this for all $n \in \mathbb{N}$, we find that

$$
x-\sum_{n=0}^{k-1} d_{n} p^{n}=x-\sum_{n=0}^{k-1}\left(p^{n} y_{n}-p^{n+1} y_{n+1}\right)=x-\left(y_{0}-p^{k} y_{k}\right)=p^{k} y_{k},
$$

therefore $\left|x-\sum_{n=0}^{k-1} d_{n} p^{n}\right|_{p} \leq p^{-k}$ for all $k$. So $x=\lim _{n \rightarrow \infty} \sum_{n=0}^{k-1} d_{n} p^{n}=\sum_{n=0}^{\infty} d_{n} p^{n}$, as required.

Corollary. Every $x \in \mathbb{Q}_{p}^{\times}$has a unique series expansion $x=\sum_{n=v}^{\infty} d_{n} p^{n}$ with $d_{n} \in\{0,1, \ldots, p-1\}$ for all $n \in \mathbb{N}$, and $d_{v} \neq 0$. In this case $\operatorname{ord}_{p}(x)=v$.

