MATH8510
 Lecture 8 Notes

Charlie Conneen

September 9, 2022

Elementary Properties of \mathbb{Q}_{p} (continued)

The following proposition lists a few easy but useful equivalences to keep in mind.
Proposition. If $x, y \in \mathbb{Z}_{p}$ and $n \in \mathbb{N}$, the following are equivalent:

1. $|x-y|_{p} \leq p^{-n}$;
2. $x \equiv y \bmod p^{n} \mathbb{Z}_{p}$;
3. $x+p^{n} \mathbb{Z}_{p}=y+p^{n} \mathbb{Z}_{p} ;$
4. $\operatorname{ord}_{p}(x-y) \geq n$.

Recall the "tree-like" structure we saw on \mathbb{Z}_{p} from last lecture. The fact that every node in that tree has only finitely many branches is a consequence of the fact that the residue field $\mathbb{Z}_{p} / p \mathbb{Z}_{p}$ is finite. We can still draw the same kind of tree picture for other valuation rings, but the number of branches will be instead the cardinality of the residue field.

We also make a note of the fact that ord_{p} is discrete, i.e. $\operatorname{ord}_{p}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}$ is a discrete subgroup of \mathbb{R}. The fact that the tree diagram from last lecture is accurate is due to this fact, and the story will not be the same in $\overline{\mathbb{Q}_{p}}$ nor in \mathbb{C}_{p}.

Theorem. For each prime p, \mathbb{Z}_{p} is compact and \mathbb{Q}_{p} is locally compact.
Proof. Fix $\varepsilon>0$ and choose $n \in \mathbb{N}$ sufficiently large such that $p^{-n} \leq \varepsilon$. Then

$$
\mathbb{Z}_{p}=\bigcup_{d=0}^{p^{n}-1}\left(d+p^{n} \mathbb{Z}_{p}\right)=\bigcup_{d=0}^{p^{n}-1} B_{p^{-n}}(d)=\bigcup_{d=0}^{p^{n}-1} B_{\varepsilon}(d)
$$

Since we can do this for all $\varepsilon>0$, this shows that \mathbb{Z}_{p} is totally bounded. So to show compactness, it suffices to check that \mathbb{Z}_{p} is complete with respect to $|\cdot|_{p}$. This is easily checked. So \mathbb{Z}_{p} is complete and totally bounded, hence compact.

Now take any $x_{0} \in \mathbb{Q}_{p}$. Since the map $\mathbb{Z}_{p} \rightarrow x_{0}+\mathbb{Z}_{p}$ is a homeomorphism (by a homework problem), we can see that $x_{0}+\mathbb{Z}_{p}$ is a compact open neighbourhood of x_{0}. This shows that \mathbb{Q}_{p} is locally compact.

Building Towards Hensel's Lemma

Proposition. Let R be a ring, $q(X)=c_{0}+c_{1} X+\cdots+c_{d} X^{d} \in R[X]$ a polynomial in R. The formal derivative of $q(x)$:

$$
q^{\prime}(x):=c_{1}+2 c_{2} X+3 c_{3} X^{2}+\cdots+d c_{d} X^{d-1}
$$

and the polynomial $\widetilde{q}(X, Y) \in R[X, Y]$ given by

$$
\widetilde{q}(X, Y):=\sum_{i=0}^{d-2} c_{i+2} \sum_{j=0}^{i}\binom{i+2}{j+2} X^{i-j} Y^{j}
$$

satisfy the following equality:

$$
q(X+Y)=q(X)+Y q^{\prime}(X)+Y^{2} \widetilde{q}(X, Y) .
$$

Proof. This can be verified directly.
Corollary. If $q(X) \in \mathbb{Z}_{p}[X, Y]$ and $q: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is the evaluation map associated to $q(X)$, then the following are true:

1. If $c \in \mathbb{Z}_{p}$, then either $q\left(c+p \mathbb{Z}_{p}\right) \subseteq p \mathbb{Z}_{p}$ or $q\left(c+p \mathbb{Z}_{p}\right) \subseteq \mathbb{Z}_{p}^{\times}$.
2. If $c \in \mathbb{Z}_{p}$ satisfies $q^{\prime}(c) \in \mathbb{Z}_{p}^{\times}$, then there exists at most one $x \in c+p \mathbb{Z}_{p}$ such that $q(x)=0$.

Proof. Suppose $c \in \mathbb{Z}_{p}$. For each $x \in c+p \mathbb{Z}_{p}$, we have

$$
q(x)=q(c+(x-c))=q(c)+(x-c) q^{\prime}(c)+(x-c)^{2} \widetilde{q}(x, x-c)
$$

This means $q(x)=q(c)+(x-c) z$ for some $z \in \mathbb{Z}_{p}$. There are two cases: if $q(c) \in p \mathbb{Z}_{p}$, then

$$
|q(x)| \leq \max \left\{|q(c)|_{p},|(x-c) z|_{p}\right\} \leq 1
$$

So $q(x) \in p \mathbb{Z}_{p}$. So this would mean that $q\left(c+p \mathbb{Z}_{p}\right) \subseteq p \mathbb{Z}_{p}$. Otherwise, $q(c) \in \mathbb{Z}_{p}^{\times}$, which would yield $|q(c)|_{p}=1 \geq|(x-c) z|_{p}$. Then the strong triangle equality says

$$
|q(x)|_{p}=\max \left\{|q(c)|_{p},|(x-c) z|_{p}\right\}=1
$$

Then $q(x) \in \mathbb{Z}_{p}^{\times}$, so $q\left(c+p \mathbb{Z}_{p}\right) \subseteq \mathbb{Z}_{p}^{\times}$.
As for (b), suppose $c \in \mathbb{Z}_{p}$ satisfies $q^{\prime}(c) \in \mathbb{Z}_{p}^{\times}$(i.e. $\left|q^{\prime}(c)\right|_{p}=1$). Then if $x, y \in c+p \mathbb{Z}_{p}$ and $q(x)=q(y)=0$, then

$$
0=q(y)=q(x+(y-x))=q(x)+(y-x) q^{\prime}(x)+(y-x)^{2} \widetilde{q}(x, y-x)
$$

meaning $(y-x)\left(q^{\prime}(x)+(y-x) \widetilde{q}(x, y-x)\right)=0$. So $q^{\prime}(x) \in \mathbb{Z}_{p}^{\times}$by part (a), so $\left|q^{\prime}(x)\right|_{p}=1$, and $|\widetilde{q}(x, y-x)|_{p} \leq 1$, and thus

$$
|(y-x) \widetilde{q}(x, y-x)|_{p}<1
$$

So the strong triangle inequality yields $\left|q^{\prime}(x)+(y-x) \widetilde{q}(x, y-x)\right|_{p}=1$. So $x=y$.

