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Elementary Properties of Qp (continued)

The following proposition lists a few easy but useful equivalences to keep in mind.

Proposition. If x, y ∈ Zp and n ∈ N, the following are equivalent:

1. |x − y|p ≤ p−n;

2. x ≡ y mod pnZp;

3. x + pnZp = y + pnZp;

4. ordp(x − y) ≥ n.

Recall the “tree-like” structure we saw on Zp from last lecture. The fact that every node
in that tree has only finitely many branches is a consequence of the fact that the residue
field Zp/pZp is finite. We can still draw the same kind of tree picture for other valuation
rings, but the number of branches will be instead the cardinality of the residue field.

We also make a note of the fact that ordp is discrete, i.e. ordp(Zp) = Z is a discrete
subgroup of R. The fact that the tree diagram from last lecture is accurate is due to this
fact, and the story will not be the same in Qp nor in Cp.

Theorem. For each prime p, Zp is compact and Qp is locally compact.

Proof. Fix ε > 0 and choose n ∈ N sufficiently large such that p−n ≤ ε. Then

Zp =

pn−1⋃

d=0

(d + pnZp) =

pn−1⋃

d=0

Bp−n(d) =

pn−1⋃

d=0

Bε(d).

Since we can do this for all ε > 0, this shows that Zp is totally bounded. So to show
compactness, it suffices to check that Zp is complete with respect to | ∙ |p. This is easily
checked. So Zp is complete and totally bounded, hence compact.

Now take any x0 ∈ Qp. Since the map Zp → x0+Zp is a homeomorphism (by a homework
problem), we can see that x0 + Zp is a compact open neighbourhood of x0. This shows that
Qp is locally compact. �
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Building Towards Hensel’s Lemma

Proposition. Let R be a ring, q(X) = c0 + c1X + ∙ ∙ ∙ + cdX
d ∈ R[X] a polynomial in R. The

formal derivative of q(x):

q′(x) := c1 + 2c2X + 3c3X
2 + ∙ ∙ ∙ + dcdX

d−1

and the polynomial q̃(X,Y ) ∈ R[X,Y ] given by

q̃(X,Y ) :=
d−2∑

i=0

ci+2

i∑

j=0

(
i + 2
j + 2

)

Xi−jY j

satisfy the following equality:

q(X + Y ) = q(X) + Y q′(X) + Y 2q̃(X,Y ).

Proof. This can be verified directly. �

Corollary. If q(X) ∈ Zp[X,Y ] and q : Zp → Zp is the evaluation map associated to q(X), then
the following are true:

1. If c ∈ Zp, then either q(c + pZp) ⊆ pZp or q(c + pZp) ⊆ Z×
p .

2. If c ∈ Zp satisfies q′(c) ∈ Z×
p , then there exists at most one x ∈ c + pZp such that q(x) = 0.

Proof. Suppose c ∈ Zp. For each x ∈ c + pZp, we have

q(x) = q(c + (x − c)) = q(c) + (x − c)q′(c) + (x − c)2q̃(x, x − c).

This means q(x) = q(c) + (x− c)z for some z ∈ Zp. There are two cases: if q(c) ∈ pZp, then

|q(x)| ≤ max
{
|q(c)|p , |(x − c)z|p

}
≤ 1

So q(x) ∈ pZp. So this would mean that q(c + pZp) ⊆ pZp. Otherwise, q(c) ∈ Z×
p , which

would yield |q(c)|p = 1 ≥ |(x − c)z|p. Then the strong triangle equality says

|q(x)|p = max
{
|q(c)|p , |(x − c)z|p

}
= 1.

Then q(x) ∈ Z×
p , so q(c + pZp) ⊆ Z×

p .
As for (b), suppose c ∈ Zp satisfies q′(c) ∈ Z×

p (i.e. |q′(c)|p = 1). Then if x, y ∈ c + pZp

and q(x) = q(y) = 0, then

0 = q(y) = q(x + (y − x)) = q(x) + (y − x)q′(x) + (y − x)2q̃(x, y − x)

meaning (y − x)(q′(x) + (y − x)q̃(x, y − x)) = 0. So q′(x) ∈ Z×
p by part (a), so |q′(x)|p = 1,

and |q̃(x, y − x)|p ≤ 1, and thus

|(y − x)q̃(x, y − x)|p < 1.

So the strong triangle inequality yields |q′(x) + (y − x)q̃(x, y − x)|p = 1. So x = y. �
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