MATH8510 Lecture 8 Notes

Charlie Conneen

September 9, 2022

Elementary Properties of \mathbb{Q}_p (continued)

The following proposition lists a few easy but useful equivalences to keep in mind.

Proposition. If $x, y \in \mathbb{Z}_p$ and $n \in \mathbb{N}$, the following are equivalent:

- 1. $|x-y|_p \le p^{-n};$
- 2. $x \equiv y \mod p^n \mathbb{Z}_p;$
- 3. $x + p^n \mathbb{Z}_p = y + p^n \mathbb{Z}_p;$

4.
$$\operatorname{ord}_p(x-y) \ge n$$
.

Recall the "tree-like" structure we saw on \mathbb{Z}_p from last lecture. The fact that every node in that tree has only finitely many branches is a consequence of the fact that the residue field $\mathbb{Z}_p/p\mathbb{Z}_p$ is finite. We can still draw the same kind of tree picture for other valuation rings, but the number of branches will be instead the cardinality of the residue field.

We also make a note of the fact that ord_p is *discrete*, i.e. $\operatorname{ord}_p(\mathbb{Z}_p) = \mathbb{Z}$ is a discrete subgroup of \mathbb{R} . The fact that the tree diagram from last lecture is accurate is due to this fact, and the story will not be the same in $\overline{\mathbb{Q}_p}$ nor in \mathbb{C}_p .

Theorem. For each prime p, \mathbb{Z}_p is compact and \mathbb{Q}_p is locally compact.

Proof. Fix $\varepsilon > 0$ and choose $n \in \mathbb{N}$ sufficiently large such that $p^{-n} \leq \varepsilon$. Then

$$\mathbb{Z}_{p} = \bigcup_{d=0}^{p^{n}-1} (d+p^{n}\mathbb{Z}_{p}) = \bigcup_{d=0}^{p^{n}-1} B_{p^{-n}}(d) = \bigcup_{d=0}^{p^{n}-1} B_{\varepsilon}(d).$$

Since we can do this for all $\varepsilon > 0$, this shows that \mathbb{Z}_p is totally bounded. So to show compactness, it suffices to check that \mathbb{Z}_p is complete with respect to $|\cdot|_p$. This is easily checked. So \mathbb{Z}_p is complete and totally bounded, hence compact.

Now take any $x_0 \in \mathbb{Q}_p$. Since the map $\mathbb{Z}_p \to x_0 + \mathbb{Z}_p$ is a homeomorphism (by a homework problem), we can see that $x_0 + \mathbb{Z}_p$ is a compact open neighbourhood of x_0 . This shows that \mathbb{Q}_p is locally compact.

Building Towards Hensel's Lemma

Proposition. Let R be a ring, $q(X) = c_0 + c_1X + \cdots + c_dX^d \in R[X]$ a polynomial in R. The formal derivative of q(x):

$$q'(x) \coloneqq c_1 + 2c_2X + 3c_3X^2 + \dots + dc_dX^{d-1}$$

and the polynomial $\tilde{q}(X, Y) \in R[X, Y]$ given by

$$\widetilde{q}(X,Y) := \sum_{i=0}^{d-2} c_{i+2} \sum_{j=0}^{i} {i+2 \choose j+2} X^{i-j} Y^j$$

satisfy the following equality:

$$q(X+Y) = q(X) + Yq'(X) + Y^2\tilde{q}(X,Y).$$

Proof. This can be verified directly.

Corollary. If $q(X) \in \mathbb{Z}_p[X,Y]$ and $q : \mathbb{Z}_p \to \mathbb{Z}_p$ is the evaluation map associated to q(X), then the following are true:

- 1. If $c \in \mathbb{Z}_p$, then either $q(c + p\mathbb{Z}_p) \subseteq p\mathbb{Z}_p$ or $q(c + p\mathbb{Z}_p) \subseteq \mathbb{Z}_p^{\times}$.
- 2. If $c \in \mathbb{Z}_p$ satisfies $q'(c) \in \mathbb{Z}_p^{\times}$, then there exists at most one $x \in c + p\mathbb{Z}_p$ such that q(x) = 0.

Proof. Suppose $c \in \mathbb{Z}_p$. For each $x \in c + p\mathbb{Z}_p$, we have

$$q(x) = q(c + (x - c)) = q(c) + (x - c)q'(c) + (x - c)^2 \tilde{q}(x, x - c).$$

This means q(x) = q(c) + (x - c)z for some $z \in \mathbb{Z}_p$. There are two cases: if $q(c) \in p\mathbb{Z}_p$, then

$$|q(x)| \le \max\left\{|q(c)|_{p}, |(x-c)z|_{p}\right\} \le 1$$

So $q(x) \in p\mathbb{Z}_p$. So this would mean that $q(c+p\mathbb{Z}_p) \subseteq p\mathbb{Z}_p$. Otherwise, $q(c) \in \mathbb{Z}_p^{\times}$, which would yield $|q(c)|_p = 1 \ge |(x-c)z|_p$. Then the strong triangle equality says

$$|q(x)|_p = \max\left\{|q(c)|_p, |(x-c)z|_p\right\} = 1$$

Then $q(x) \in \mathbb{Z}_p^{\times}$, so $q(c + p\mathbb{Z}_p) \subseteq \mathbb{Z}_p^{\times}$.

As for (b), suppose $c \in \mathbb{Z}_p$ satisfies $q'(c) \in \mathbb{Z}_p^{\times}$ (i.e. $|q'(c)|_p = 1$). Then if $x, y \in c + p\mathbb{Z}_p$ and q(x) = q(y) = 0, then

$$0 = q(y) = q(x + (y - x)) = q(x) + (y - x)q'(x) + (y - x)^2 \widetilde{q}(x, y - x)$$

meaning $(y-x)(q'(x) + (y-x)\tilde{q}(x, y-x)) = 0$. So $q'(x) \in \mathbb{Z}_p^{\times}$ by part (a), so $|q'(x)|_p = 1$, and $|\tilde{q}(x, y-x)|_p \leq 1$, and thus

$$\left| (y-x)\widetilde{q}(x,y-x) \right|_p < 1.$$

So the strong triangle inequality yields $|q'(x) + (y-x)\tilde{q}(x,y-x)|_p = 1$. So x = y.

-		